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Abstract

Climate change poses serious challenges to the growth and stability of fishing communities. While a diverse
portfolio of fisheries has been shown to stabilize income for individual fishers and communities, evidence
regarding its role in broader local economies remains limited. This study addresses this gap by examining
how fisheries and industrial diversification shape economic growth and stability. Using a hyperbolic distance
function (HDF), we analyze 17 years of fisheries and economic data for 177 Alaskan fishing communities.
Our findings show that both fisheries and industrial diversification significantly affect employment growth
and the stability of local fishing economies. Economic stability often comes at the cost of reduced growth,
reflecting the risk-return trade-offs inherent in diversification. We also identify a complementary relation-
ship between industrial diversification and fisheries specialization. This dual-track strategy, which balances
diversification and specialization across fisheries and industrial sectors, enables communities to adapt their
economic structures to local circumstances while minimizing trade-offs between growth and stability. These
results suggest that policymakers should prioritize strategies that foster balanced diversification and special-

ization, tailored to community conditions, to strengthen resilience in the face of climate-related uncertainties.
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1 Introduction

Climate-induced changes in the ocean increasingly threaten the sustainability of coastal communities that
rely on fisheries. Shifts in the distribution and productivity of fish stocks compound existing pressures from
overexploitation, sea level rise, ocean acidification, and the globalization of the seafood trade (Anderson
et al.L[2018} [Pinsky et al.,[2018; Free et al., 2019; Rogers et al., 2019). These challenges are particularly acute
in vulnerable communities, where declining and aging populations exacerbate risks of economic and social
instability (Himes-Cornell and Kasperski, 2015} |Colburn et al., [2016} Blasiak et al., 2017). As traditional
fishing practices face growing uncertainties, the resilience of these communities depends on their ability to
adapt to changing coastal, demographic, and economic conditions (Birkenbach et al., [2023)).

Diversifying fishing activities across multiple fisheries is a promising strategy for coastal communities
to adapt to the uncertainties of a changing marine environment. Just as a diversified portfolio of financial
assets reduces overall return variability (Markowitz, [1952), a well-diversified portfolio of fisheries revenue
streams can lower a community’s exposure to climate-induced shocks, particularly when shocks affect fish
populations and markets asynchronously. Extensive research supports this stabilizing effect, showing that
diversification can buffer fluctuations in commercial fisheries and the livelihoods they support (Kasperski
and Holland, [2013} |Sethi et al.l |2014; Holland et al., 2017; |Young et al., 2019; [Fisher et al., 2021; |Abbott
et al., 2023). Consequently, many studies emphasize harvesting diverse fisheries and adapting portfolios to
changing conditions as a critical means of stabilizing local economies that depend on fisheries (Cline et al.,
2017; Bris et al., 2018} [Salgueiro-Otero et al., 2022).

While diversifying fisheries portfolios can support adaptation, it entails notable challenges. Most fisheries
are not open-access and require fishers to purchase permits, which can be prohibitively expensive (Holland
and Kasperski, 2016). Limited access to capital further constrains fishers’ ability to invest in permits and
expand fishing opportunities (Olson, |2011). Diversification may also dilute the knowledge and efficiencies
gained through specialization, potentially reducing overall returns (Anderson et al.,|2017). Geographic and
ecological constraints matter as well: in regions with fewer or more volatile local fisheries, communities
have limited options for constructing a diversified portfolio, leaving them less able to capture diversification
benefits (Sethi et al., |2014; [Young et al., 2019). In addition, as fisheries management has become more
prescriptive to address overfishing and overcapacity, the scope for diversifying across fisheries has narrowed,

and diversification has declined in many parts of the world (Holland et al.,[2017; |Abbott et al., [2023]).



An important uncertainty in assessing the buffering role of fisheries diversification concerns the position
of commercial fishing within the broader local economy. In many regions, the economic prominence of
commercial fishing is declining as coastal communities face increasing competition for limited offshore space
from aquaculture, tourism, offshore wind energy, and resource extraction (FAO) 2024). Future resilience
will likely hinge on communities’ ability to adapt to a shifting economic landscape shaped by emerging
marine industries. Just as fisheries diversification can stabilize fishing revenues, industrial diversification
can provide broader economic stability by offsetting losses in one sector with gains in others (Chandra, 2002,
2003; [Kluge, 2018; Hafner, |2019). Diversifying across sectors reduces reliance on fisheries and mitigates
exposure to fluctuations in fish populations and seafood markets. Communities that successfully diversify
their economies and adjust industrial portfolios toward emerging marine sectors are therefore more likely to
achieve greater economic stability and growth (van Putten et al., 2016).

Empirical evidence on the roles of fisheries and industrial diversification in the stability and growth of
local fishing economies remains limited. Prior research has largely examined the stabilizing effect of fisheries
diversification on fishing revenues, with less attention to local economic outcomes such as employment or
wages (Sethi et al 2014} Cline et al., 2017} Young et al., 2019} [Fisher et al.l [2021). Moreover, many
studies emphasize reduced instability while overlooking implications for returns or growth, despite the well-
established trade-off between stability and growth in modern portfolio theory (Markowitz, {1952)). Examining
the joint dynamics of economic growth, instability, and diversification is therefore essential for a holistic
understanding of these trade-offs in coastal economies and for informing policies that support adaptation to
a changing marine environment.

In this study, we examine how fisheries and industrial diversification contribute to long-term growth
and stability in local fishing economies. We focus on Alaska’s fishing communities, which accounted
for 60% of U.S. domestic seafood landings in 2020 (NOAA), [2022)). These communities face significant
climate-related challenges, including warming ocean temperatures, ocean acidification, shifting fish-stock
distributions, and increased price volatility (Himes-Cornell and Hoelting, 2015} |Kasperski and Holland,
2013). Using 17 years of employment and fishing revenue data from 177 communities, we estimate the
trade-off between employment growth and stability with a hyperbolic distance function (HDF) adapted from
production economics. The HDF identifies the frontier of efficient combinations of employment growth and
stability and, in turn, allows us to characterize how fisheries and industrial diversification shape efficient

growth—stability outcomes. This framework provides new insight into the growth—stability relationship and



the interaction between fisheries and industrial diversification in fishing communities.

Our findings show that both fisheries and industrial diversification significantly shape employment growth
and stability. Economic stability often comes at the cost of lower growth, reflecting the risk—return trade-offs
inherent in diversification. We also identify a complementary relationship between industrial diversification
and fisheries specialization. A dual-track strategy that balances specialization and diversification across fish-
eries and industrial sectors enables communities to adapt their economic structures to local circumstances
while minimizing growth—stability trade-offs. Our results suggest that policymakers should prioritize strate-
gies that foster balanced diversification and specialization across fisheries and industrial sectors to build

resilience in fishing communities facing climate-related uncertainties.

2 Empirical setting and data

Alaska offers a valuable context for studying how fisheries and industrial diversification shape local economic
growth and stability. The state’s commercial fishing sector is substantial, generating $5.2 billion in wholesale
revenues in 2022 and employing 48,000 workers, representing 66% of manufacturing jobs (ASMI| [2024).
Its economic impact is significant: a 10% increase in fishery earnings raises resident income by 0.7% (i.e.,
$1.54 per additional dollar earned) (Watson et al., 2021). At the same time, Alaska’s economy is not solely
dependent on fishing. Since the 1980s, the oil and gas sector has been dominant, and tourism, shipping,
transportation, and the public sector also play vital roles. These industries often surpass fishing as primary
sources of employment in coastal communities, underscoring the importance of industrial diversification for
local economies.

Alaska is also a compelling case study because unique data measure employment and wages by workers’
place of residence. Traditional datasets, such as the Bureau of Labor Statistics’ Quarterly Census of
Employment and Wages (QCEW), typically report employment and wage statistics by place of work and
at aggregated geographies such as the county. This approach presents two challenges. First, county-
level statistics can obscure meaningful empirical relationships, particularly in regions like Alaska and the
Western U.S., where counties are geographically large and encompass heterogeneous communities. Second,
discrepancies between where individuals live and work complicate inferences about people rather than places
(Guettabi and James, [2020; |Jacobsen et al., [2023).

The Alaska Local and Regional Information (ALARI) database addresses these challenges by reporting



employment and wage data by industrial sector measured at workers’ places of residence. This approach is
enabled by the Alaska Department of Labor and Workforce Development’s (AKDOL) linkage of unemploy-
ment insurance records (also used in the QCEW) with Alaska’s Permanent Fund Dividend (PFD) application
data. The PFD, paid annually to eligible residents who have lived in the state for a full calendar year and
intend to remain indefinitely, includes applicants’ residential addresses. This linkage provides granular,
community-level insight into employment and wage patterns and offers a basis for examining how fisheries
and industrial diversification relate to local economic growth and stability.

We compile a comprehensive dataset of economic and commercial fishing variables for all Alaskan
communities involved in commercial fisheries between 2000 and 2016. Data on permit-owner earnings
are sourced from the Alaska Commercial Fisheries Entry Commission (CFEC) Basic Information Tables,
which provide annual records of harvests and earnings for each community—fishery pair. Alaskan fisheries
are defined by species, fishing district, and gear type, and participation requires a fishery-specific permit
issued by the CFEC. In 2010, 20,275 permits were issued across 205 fisheries in Alaska, with permit-owner
communities identified by the addresses listed on their permits. The value of deliveries to local processors
is aggregated from individual delivery records reported through the Alaska Department of Fish and Game’s
(ADF&G) fish tickets and eLandings systems.

Information on local wages and employment comes from the ALARI database, which provides sector-
specific economic data for 344 Alaskan communities over the same period. Complementing these data,
demographic variables, such as average population size, were obtained from the Alaska Bureau of Labor
Statistics to give broader context to the local economies of fishing communities. For our analysis, we focus on
177 communities that consistently engaged in commercial fishing throughout the study period (2000-2016),
covering a period of 17 years.

It is important to clarify that ALARI records are derived from unemployment insurance data, which
exclude many categories of workers in the seafood industry. Commercial fishers and crew, who are typically
self-employed or contract workers, are not captured. Wages for upstream and downstream proprietors and
other self-employed individuals are also omitted. By contrast, wage and employment data for workers
employed by commercial processors are included in ALARI. This distinction is crucial for interpreting
which types of employment are affected by fisheries and industrial diversification. Accordingly, we do not
consider the direct effect of fisheries diversification on fisheries employment.

A further consideration is that ALARI measures the number of individual workers rather than full-time



equivalent (FTE) jobs. Because Alaska’s seafood industry is highly seasonal, many workers are employed
only for a few months each year. Our employment estimates may therefore differ from studies that report

FTE measures.

3 Diversification, growth, and growth instability in Alaskan communities

In this study, we use employment growth rather than GDP to measure economic growth because employment
data are available at a finer resolution (both geographically and by industry), whereas GDP is typically
reported only at broader geographies (e.g., state). Employment metrics therefore provide more detailed
micro-level insights into local fishing economies and align with our focus on industrial diversification, as
sector-level job trends capture economic shifts more consistently. We measure a community’s average
economic growth using the geometric growth return of employment, which captures compounding (as with
compound interest) and provides a more accurate view of long-run outcomes. Following |[Lande| (1994),

Chandra (2002), and Hafner| (2019)), this measure is obtained by estimating: EI

log(Empl,C) = Bo,c + Plc -t + €&, (D)

where Emp; . is employment in community ¢ at year ¢, and 31 . denotes the instantaneous employment
growth rate for community ¢. We convert this to an average annual geometric growth return, 1 + u. =
exp{pBi.c}, where u. is community ¢’s geometric growth rate. Economic instability is quantified as the
standard deviation of the residuals from the ordinary least squares (OLS) estimate of the log-linear time
trend in Equation (I). The fitted trend captures the long-run (geometric) return. Larger positive or negative
deviations from this trend are interpreted as instability in year-to-year growth. Further details and justification
are provided in Appendix

Previous studies commonly measure diversification using the inverse Herfindahl-Hirschman Index (HHI)
or the Shannon diversity index (Kasperski and Holland,2013;/Holland and Kasperskil, 2016;|Sethi et al.,[2014;
Kluge, |2018; Hatner, 2019). We adopt the Shannon diversity index, defined as the exponential of Shannon
entropy, to quantify industrial diversification. This measure has intuitive interpretation: if a community
achieves the same level of economic growth across N industrial sectors and then doubles the number to 2N

while maintaining the same growth, the index also doubles. It represents the effective number of perfectly

I'This approach is also employed in reports by the World Bank (Chandral, 2002).



balanced sectors within a community (Jost, [2006; |Abbott et al., 2023).
We calculate this index from employment growth across 13 industrial sectors within a community, rather

than from employment levelsE] Formally,

T N
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Dive = Zl exp| — Zl Pict NPic; | )
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Pies = 3)
where P;., is the share of total employment growth contributed by sector i in community c¢ in year ¢, and
AEmp;., is sector-i employment growth. The Shannon-based diversification measure in Equation (2)) equals
the exponential of Shannon entropy evaluated on {Pict}l’.\; ,- Itapproaches 1 when a single sector dominates
and increases with diversification; Div. averages this annual index over the T years.

Kluge (2018) advocates growth-based diversification measures over traditional size-based measures (i.e.,
shares). Size-based indices can misleadingly encourage regions dominant in stable sectors to diversify into
more volatile ones, potentially reducing stability rather than enhancing it; they also fail to distinguish how
positive versus negative growth affects stability. As a result, size-based measures may mask underlying insta-
bility during periods of rapid sector-specific expansion or contraction, even when the industrial composition
appears unchanged. A growth-based approach more accurately captures variability in sector contributions
and provides a more reliable indicator of economic stability.

For fisheries diversification, we follow [Sethi et al.[(2014)) and compute a Shannon diversity index based
on fishing permits. Although many studies use realized fishing revenues or landings, those metrics are
distorted by stochastic catch variation and price volatility. Using the number of active permits provides a
more stable, ex-ante measure of diversification that avoids noise from short-run fluctuations in catch volumes
and market conditions.

Table [1| reports summary statistics for the variables used in this study, calculated as averages over the
study period. Long-run economic growth, measured by the average annual geometric return of employment
in local fishing economies, is close to one, indicating near-zero growth. On average, employment in Alaska’s
fishing communities was largely stable or slightly declining, with an annual decrease of approximately 0.3%.

Industrial diversification averages 5.7 effective, perfectly balanced sectors based on the North American

20ur local fishing economy data classify industrial sectors using North American Industry Classification System (NAICS) codes,
which are also used for federal and state labor statistics.



Table 1: Summary statistics

Variable N Mean SD  Min Max
Employment Growth (Return) 177 0997 0.019 0919 1.060
Growth Instability 177 1.080 0.062 1.008 1.387
Industrial Diversification 177  5.747 1.881 1.354 8.996
Fisheries Diversification 177 3.601 3596 1.000 19.962
Population (Individuals) 177 2,908 21,457 13 282,781
Wage per Capita (USD) 177 9,998 4,313 1,325 27,362

Fishing Permit Share within Borough 177 0.151  0.246 0.002 1.000
Fishing Earnings to Wage Income Ratio 177 0.397  0.955 0.000 7.998

Notes: All values are averages over the study period.

Industry Classification System (NAICS). Fisheries diversification indicates typical engagement in 3—4 distinct
fisheries per community, with notable heterogeneity across communities.

Population size across Alaskan fishing communities is highly dispersed, ranging from small settlements
such as Ugashik (roughly a dozen residents on average) to Anchorage, the largest population center. This
dispersion suggests that most fishing communities are moderately to sparsely populated. Fishing permit
shares (a measure of spatial fisheries concentration within a borough) indicate that most communities are
not dominant fishing hubs, whereas a few—including Sitka, Yakutat, Anchorage, and Juneau—emerge
as hotspots with concentrated permits. The fishing earnings-to-wage income ratio, a measure of fishing
dependency, points to moderate reliance on fishing: on average, revenue from the sector accounts for about
40% of total wage income from other industries, although dependence varies substantially, as reflected by
the high standard deviation.

Figure|l| presents spatial patterns and relationships among the main variables. Alaska’s fishing commu-
nities are generally concentrated along the coast in the Southwest, Southcentral (around the Gulf of Alaska),
and Southeast regions, with some inland communities along the Yukon River primarily for salmon fisheries.
Over the study period, employment growth was relatively steady overall, with higher growth in the Southwest
than elsewhere. In Southcentral, communities with higher instability are primarily along the Gulf of Alaska,
and these areas overlap with higher economic growth; however, in general, high growth does not strongly
coincide with high instability.

Industrial and fisheries diversification are positively correlated across communities. Communities in
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Figure 1: Employment Growth, Instability, Industrial and Fisheries Diversification in Alaskan Fishing
Communities (2000-2016)

Western Alaska display low diversification in both industrial structure and fisheries yet are associated with
higher economic growth. This pattern suggests that more specialized regions (e.g., the Southwest) may be
driving growth. Finally, the relationship between diversification (both industrial and fisheries) and economic

instability is less distinct but generally negative. Communities along the Aleutian Islands (Bering Sea) and



in Southeast with less diversification exhibit higher instability, consistent with the high-risk, high-return
implication of modern portfolio theory.

Figure 2] provides a closer look at the relationship between employment growth return, economic growth
instability, and diversification (industrial or fisheries). By plotting economic instability on the x-axis,
employment growth on the y-axis, and coloring each fishing community by diversification quantile (in 4

groups, from low to high), we further examine their relationship in detail.
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Figure 2: Economic growth—instability portfolio profiles of Alaskan fishing communities by diversification
quantiles (2000-2016). Colors and shapes of dots represent industrial and fisheries diversification quantiles
(1st—4th).

In the left panel of Figure 2] the growth-instability portfolio for fishing communities is shown by
industrial diversification. The figure provides a couple of insights: First, the distribution of the fishing
communities’ risk-return portfolio appears to form a general minimum-variance frontier as suggested by
MPT. This indicates that the relationship between economic growth, as measured by employment in Alaska
fishing communities, and the associated economic instability is inherently non-linear.

Previous research has analyzed risk and return in fishing revenue, typically focusing on the risk-
diversification relationship using linear risk measures like the Coefficient of Variation (CV) of fishing
revenue (Sethi et al., 2014} Kasperski and Holland, 2013} |Abbott et al., 2023} |Gokhale et al., [2024)). How-
ever, if a non-linear relationship between economic growth and instability exists, a linear approach may fail to
capture the true dynamics of risk-return-diversification. To address this limitation, our estimation approach
(described below) relaxes the linearity assumption and employs a more flexible functional form to better
understand the nuanced relationship between a community’s economic growth and instability.

Second, the figure illustrates that fishing communities with higher industrial diversification (i.e., 3rd (50-
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75%) and 4th quantiles (75-100%)) tend to cluster near zero growth (i.e., close to one as return) but with lower
instability. This indicates that communities with greater industrial diversification may, on average, experience
a steady-state employment growth status. Conversely, communities with low industrial diversification,
particularly those in the first and second industrial diversity quantiles, exhibit greater dispersion in the

growth-instability space.

4 A hyperbolic distance function approach

We adopt the hyperbolic distance production function (HDF) approach, commonly used in production
economics. In this framework, economic growth is treated as a desirable output, while economic risk is
considered an undesirable output in the growth process of communities. Here, x represents a vector of K
inputs (x € Rf ), ¥ denotes a vector of V desirable outputs (y € RK), and s refers to a vector of U undesirable
outputs (s € RS{), produced as byproducts of y. The production technology is defined by the production
possibility set:

T ={(x,y,8):x€ Rf,y eRY,se Rg,x can produce (y, 5)}. 4)

The production technology is also characterized by a distance function, which provides insights into
production dynamics by analyzing three key relationships: (1) the shape of the production frontier, including
the curvature between outputs (y — y’ for desirable outputs and y — s for desirable and undesirable outputs);
(2) the relationship between inputs and outputs (y — x), analogous to a production function; and (3) the
complementarity or substitutability between inputs (x — x’), such as the marginal rate of technological
substitution (MRTS) along the isoquant (Morrison-Paul et al., |2000; (Cuesta et al., 2009; |Dalheimer et al.,
2024). This approach offers a comprehensive framework for studying growth and stability dynamics in
fishing communities, considering diversification and other community-specific factors.

The traditional output distance function measures the maximum feasible expansion of only desirable
outputs (y) required to reach the boundary of the production possibility set (7). It evaluates the efficiency of

a production bundle relative to the production frontier, defined as:
DO(x,y,s) = infg{0 > 0 : (x, g,s) eT}. 3)
When D? = 1, the production bundle is efficient and lies on the frontier. Conversely, D < 1 indicates
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Community B

Figure 3: Conceptualized hyperbolic distance function characterizes the production possibility frontier be-
tween economic outputs and specialization (inverse diversification). Red dots (like Community A) represent
communities that lie on the frontier—indicating fully efficient economic growth (appropriate growth and
instability) at a given specialization level—while black dots (like Community B) indicate communities with
room for further improvement with either more growth or less instability at given specialization.

inefficiency, suggesting that expanding desirable outputs (y) can bring the production bundle closer to the
frontier. However, this function does not differentiate between desirable and undesirable outputs, limiting
its capacity to address trade-offs between these two types of outputs effectively.

To overcome this limitation, the hyperbolic distance function (HDF) is introduced. The HDF allows
for simultaneous adjustment of desirable and undesirable outputs, enabling a more nuanced measurement
of production efficiency. By capturing both economic growth and instability as desirable and undesirable
outputs, respectively, in our context, the HDF provides a comprehensive framework for evaluating the

economic growth process in fishing communities. The HDF is defined as:

D (x,y,s) = infg{6 > 0: (x, %,05‘) €T}, (6)

where the HDF takes values between 0 and 1 (i.e., D¥ € [0, 1]). This function satisfies the following proper-
ties: (1) non-decreasing in desirable outputs, D (x, xy,s) < DH (x,y, s) for k € [0, 1]; (2) non-increasing

in undesirable outputs, D¥ (x, y, ks) < DH(x,y, s) for k > 1; (3) non-increasing in inputs, D (kx, y, s) <
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DH(x,y,s) for k > 1; and (4) almost homogeneity conditions, D (x, ky, x~'s) = kD (x,y, s) (Cuesta
et al.,2009). Using a flexible translog function, the HDF for the economic production process of community

¢ can be specified as:

K K K v v Vv
1 1
In D (x,y,s) = ap + Z @ lnxpe + 5 Z ag Inxg o Inxg e + Z Bulnyve+ 5 Z Z,Bvl Iny, clnyc
k=1 k=11=1 v=1 v=11=1
U u K Vv K U
+ MZI Oulns, ¢ 5 Z Z wilns, cInsg e + ];1 ;1 YivInxg cIny, o + ,;1 MZ] NiwInxp ¢ Insy ¢

v U
+ Z 2 Ovu 1nyv,c lnsu,c,
v=1lu=1

(7
Suppose a function F satisfies almost homogeneity of degree (k1, k2, k3, k4), then F satisfies the following
condition:
K v U
oF oF oF
k — +k — +k — = k4F 8
1;1 o 2;ayv 3;_:1(%” 4 8)

Since the hyperbolic distance function must satisfy almost homogeneity of degree (0, 1, —1, 1), and using

the partial derivatives derived in Equation (7)), the following condition should be satisfied for the HDF:

=1. &)

To impose the homogeneity condition, we normalize the HDF by imposing the almost homogeneity
condition, D (x, ky, k~1s) = kDH(x,y, s). Suppose k = %, with y; being the first desirable output in the

output vector y. The hyperbolic distance function then satisfies the following equation:

DH b b
DH(x, L 5.y = M (10)
Y1 Y1
By taking the natural log on both sides,
InDH(x,y*,s*) =InDH(x,y,s) —Iny,, (11)

where y* = y/y; and s* = s - y;. These values are plugged into Equation to replace y and s. Thus,

let In DH (x,y*,s*) = TL(x,y*,s*), where TL(-) is the translog hyperbolic distance function defined in

13



Equation (7). Furthermore, In D¥ is a one-sided community inefficiency component for each community
¢ in economic production, rearranged as In D{,{ = —u,. (Brimmer et al.l [2002; |Cuesta and Zofiol [2005;
Cuesta et al.,|2009). By rearranging the above equation with additional noise from estimation, we derive the

estimation equation as follows:

—1Iny; = TL(x,y*,s*) + ve + uc, (12)

where v, is estimation noise that is normally distributed around zero, capturing all unobserved factors
beyond the control of each fishing community in the economic production process. u. represents the
distance between the observed output vector and the boundary of the production possibility set. We assume
u. to be half-normally distributed around zero, as is common in the literature with this approach (Cuesta and
Zofio, 2005} |Cuesta et al., 2009; [Zhang and Ye, 2015). Additionally, we allow u. to be heteroskedastic as a
function of community-specific characteristics (but not direct growth-relevant inputs), following [Dalheimer
et al.| (2024) and [Pena et al.| (2018). To avoid the bias associated with the traditional two-step estimation
process, where the frontier and inefficiency equations are estimated separately, we opt for the simultaneous
estimation of the efficient frontier and inefficiency equations using maximum likelihood estimation (MLE),
as outlined by Belotti et al.|(2013)) (Klugel 2018} [Wang and Schmidt, 2002} [Belotti et al., 2013)).
Post-estimation, following the procedure of Reimer et al.| (2017) and [Cuesta et al.| (2009)), with the
estimated parameters and technical efficiency, we are able to compute the marginal rate of transformation
(MRT) between undesirable and desirable outputs from the production, which represents the opportunity
cost of reducing bad output concerning the forgone good output. The MRT is computed as a ratio of the first
derivatives of the HDF with respect to desirable output y (here, employment growth) and undesirable output
s (here, growth instability) as follows:
0s oD" joy _&Dy

s
MRT, , = — = — = =,
Y 0y oD /0s EDs Y

13)

where £p y and ep ¢ are distance function elasticities for y and s, estimated by differentiating the translog
distance function.

The MRT can be challenging to interpret directly, as it depends on the specific output ratio. To clarify
the trade-off in relative terms, independent of absolute output scales, Morrison-Paul et al.[(2000) and |Cuesta

et al.| (2009) suggest normalizing the MRT by the output ratio, s/y. Following this approach, we compute the
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normalized MRT (NMRT), which provides insights into the relative economic growth-risk relationship in

€D,y
ED,s ’

Alaskan fishing communities, independent of output scale. The NMRT is expressed as NMRT; , = —
where the distance elasticity for the desirable output y, £p , is recovered using the homogeneity condition
in the HDF context, ep y, = 1 + &p .
Similarly, we derive the marginal product (M P) of an input x; for the desirable output y using the
distance function:
oy oD" Joxy _EDx Y

mp, =2 - TPk :
P Ox 0D /0y Ep,y Xk

(14)

where €p , 1s a distance function elasticity of an input x;. As with the NMRT, the marginal product is
computed with normalization by the output-input ratio and evaluated at means. This normalized marginal

product (NM P) provides a straightforward interpretation of the relative contribution of input to output,

SD,xk
&p.y

independent of absolute scale. The NM P of input x on output y is expressed as NM Py ,, = —

We consider one desirable output, average annual employment growth return (y. = exp(Bi.)) and
one undesirable output, economic instability (s.), measured by the standard deviation of annual geometric
employment growth over the study period for each community ¢, derived from the regression equation (1.

The input vector includes: (1) population (x1), representing labor input or human capital for community
growth (Himes-Cornell and Hoeltingl 2015)); (2) wage income per capita (x;), serving as a proxy for economic
development or productivity, reflecting economic capital quality and welfare (Klugel|[2018)); (3) an industrial
diversification measure (x3); and (4) a fisheries diversification measure (X4)EI

To meet the HDF framework’s requirements and enable intuitive interpretation, however, we invert these
diversification measures into specialization measures (1/x3 and 1/x4). Unlike traditional inputs such as labor
and capital, diversification aims for stable, moderate growth with lower risk, aligning with portfolio theory.
This unconventional input-output relationship, characterized by lower returns and risks, can complicate
interpretation in the HDF context. Inverting diversification into specialization allows us to analyze how
specialization influences economic growth and stability while ensuring compliance with the HDF’s input
properties.

Fisheries-related variables, not directly tied to broader local economy growth—such as (1) the ratio

of fishing revenue to wage income (a measure of fishing dependency) and (2) fishing permit share within

3We limit the inclusion of variables to a maximum of four input variables that strongly relate to economic growth in fishing
communities, based on available community-level data in the HDF. This limitation arises from (1) the exponential increase in the
number of parameters with additional input variables in the translog specification with limited degrees of freedom in the data, and
(2) potential difficulties in likelihood function convergence as the number of estimated parameters increases.
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a shared economic zone (a fishing hotspot (or concentration) index at the borough level)—are included in
inefficiency termsE] These variables enable heteroskedastic inefficiency, influencing distance function values
and promoting efficient economic growth in fishing communities. By reducing unnecessary instability and
fostering growth, they capture community-specific characteristics driving heterogeneous inefficiency.

To impose the homogeneity condition, we use the desirable output y. as the normalizing factor, following
Cuesta and Zofio| (2005)); |Cuesta et al.| (2009) and Reimer et al.| (2017). The resulting normalized distance

function is expressed as:

4 4 4
1
—Iny. = (a/o + Z agInxg . + 3 Z Z g Inxg cInx; . + 6 Ins} (15)
k=1 k=11=1
| 4
+ 5611 InskIns? + Z Nk Inxg ¢ In sﬁ) +ve + ue,
k=1

where s = s. - y.. The hyperbolic distance function (HDF) in Equation allows for efficient output
adjustments. Extending this, we additionally use the Enhanced Hyperbolic Distance Function (EHDF) used
by |Cuesta and Zofio| (2005)); Cuesta et al.| (2009); Dalheimer et al.| (2024)), which additionally adjusts inputs

for greater efficiency. The EHDF, denoted as D, normalizes inputs by the desirable output, yielding:

4 4 4
1
—Iny. = (ao + Z ag lnxzyc + 5 Z Za/kl lnxzyc lnxl*’c + 61 1ns} (16)
k=1 k=11=1
| 4
+ 5611 InskIns? + Z Nkl lnxzyc 1nsj> +Ve + U,
k=1

where xz’c = Xk.c " Ye-

Normalizing inputs and outputs by the homogeneity condition reduces potential simultaneity bias, as
outputs appear on both the left and right sides of the equation. This approach allows the use of output
ratios as exogenous values since they represent radial expansion while holding input levels constant (Coelli
and Perelman, |1996; (Coelli, 2000; |Cuesta and Oreal 2002)). In the EHDF framework, desirable outputs are
affected directly by error terms, while inputs (and undesirable outputs) are inversely affected, permitting
exogenous treatment of desirable-undesirable output ratio and input-output products normalized by desirable

outputs (Cuesta and Zofiol 2005; |[Dalheimer et al., 2024). For convenient elasticity evaluation at the means

4We assume that these variables may directly influence the fishing sector’s productivity but not directly impact economic growth
and instability, except through their effects on the fishing sector. Therefore, we do not include them in the frontier equation.
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and improved convergence in maximum likelihood estimation (MLE), we normalize all variables by their

geometric mean, as recommended by |Cuesta et al.| (2009) and |Reimer et al.| (2017).

5 Results

We estimate the hyperbolic distance function (HDF) and the enhanced hyperbolic distance function (EHDF)
in Equations and using the four inputs defined above. We implement stochastic frontier analysis
(SFA) under three specifications that vary the inefficiency determinants: (1) no controls, (2) spatial fishing
permit share within the shared economic zone, and (3) the fishing revenue-to-wage income ratio to assess
how fishing dependence affects community efficiency.

Table |2 reports estimates for HDF (1)—(3) and EHDF (1*)—(3*). Across all specifications, the inputs
are statistically significant in first- and/or second-order terms, supporting their inclusion. The signs and
significance of the coefficients on average population (@), wage income per capita (@), industrial spe-
cialization (@3), and fisheries specialization (a4) are consistent with the HDF’s non-increasing property in
inputs; in practice, coeflicients are significantly negative or not statistically different from zero. Per capita
wage income, a proxy for community-specific economic development and productivity, also affects economic
growth. Although its first-order effect is generally not significant, higher-order terms are significant in most
specifications, suggesting increasing returns to scale in development and productivity.

Economic instability, treated as an undesirable output, also conforms to the non-increasing property: esti-
mates for 0 are negative and statistically significant. This pattern is consistent with the high-risk, high-return
implication of modern portfolio theory (MPT). We further corroborate this trade-off by testing the output-
ratio normalized marginal rate of transformation, NMRT ,, evaluated at sample means (Equation (13));

results appear in Table 3]
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Table 2: Estimation results: (enhanced) hyperbolic distance function

) 2 3) 1) (2%) (3%)
HDF EHDF
Population (a;) -0.018***  -0.018*** -0.019*%** -0.018*** -0.018*** -0.019%**
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Wage/Capita Inc. (a2) 0.002 0.001 -0.000 0.001 0.000 -0.001
(0.004) (0.004) (0.004) (0.004) (0.004) (0.004)
Ind. Specialization (a3) -0.014* -0.015* -0.018** -0.012 -0.013* -0.016%*
(0.008) (0.008) (0.008) (0.008) (0.008) (0.008)
Fish. Specialization (a4) -0.007**% -0.007***  -0.007*** -0.006%** -0.006%**  -0.006%**
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
Population sq. (a11) 0.008***  0.008***  0.009%**  0.008*%**  0.008***  (0.008%**
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
Wage/Capita Inc. sq. (a22) -0.021 -0.023%* -0.027%* -0.020 -0.022 -0.026*
(0.046) (0.014) (0.014) (0.014) (0.014) (0.013)
Ind. Specialization sq. (@33) -0.001 0.001 -0.005 -0.018 -0.016 -0.021
(0.045) (0.045) (0.045) (0.044) (0.044) (0.044)
Fish. Specialization sq. (@44) 0.009%* 0.009* 0.010%* 0.010%* 0.009%* 0.010**
(0.004) (0.004) (0.004) (0.005) (0.005) (0.005)
Population * Wage/Capita Inc. (a12) -0.007 -0.006 -0.007 -0.005 -0.004 -0.005
(0.005) (0.004) (0.005) (0.004) (0.004) (0.004)
Population * Ind. Special. (@;3) 0.005 0.005 0.001 0.002 0.002 -0.002
(0.008) (0.009) (0.009) (0.008) (0.008) (0.009)
Population * Fish. Special. (a4) 0.008***  0.008***  0.008***  0.007***  0.007***  (0.008%**
(0.002) (0.002) (0.002) (0.003) (0.003) (0.003)
Wage/Capita Inc. * Ind. Special. (ap3) -0.016 -0.020 -0.027 -0.024 -0.025 -0.030
(0.018) (0.018) (0.018) (0.018) (0.018) (0.018)
Wage/Capita Inc. * Fish. Special. (a24) -0.003 -0.003 -0.004 -0.001 -0.001 -0.002
(0.054) (0.055) (0.054) (0.054) (0.054) (0.053)
Ind. Special. * Fish. Special. (a34) 0.015 0.015 0.014 0.016* 0.016* 0.014
(0.010) (0.010) (0.009) (0.010) (0.010) (0.010)
Econ. Instability (61) -0.302%**  -0.296%**  -0.208***  -0.321%** -0.314%** (.317F**
(0.053) (0.041) (0.039) (0.040) (0.039) (0.039)
Econ. Instability sq. (611) 0.281 0.435 0.369 0.617 0.743 0.664
(0.912) (0.929) (0.942) (0.860) (0.875) (0.886)
Population * Econ. Instability (7711) -0.011 -0.016 -0.016 0.007 0.011 0.007
(0.042) (0.041) (0.041) (0.040) (0.040) (0.040)
Wage/Capita Inc. * Econ. Instability (1721) -0.416%%*  -0.397*** -0.425%** -0.349%** _(0.335%** -(.364%**
(0.115) (0.116) (0.114) (0.114) (0.113) (0.112)
Ind. Special. * Econ. Instability (1731) -0.073 -0.091 -0.128 -0.014 -0.022 -0.059
(0.167) (0.167) (0.167) (0.163) (0.164) (0.163)
Fish. Special * Econ. Instability (1741) -0.063 -0.054 -0.061 -0.036 -0.025 -0.028
(0.050) (0.051) (0.051) (0.050) (0.050) (0.050)
Inefficiency
Broader Permit Share -0.720 -1.005 -0.717 -1.024*
(0.734) (0.645) (0.703) (0.618)
Fishing Earnings to Wage Income Ratio 0.051%* 0.052%*
(0.025) (0.023)
Observations 177 177 177 177 177 177

Standard errors in parentheses. ***p < 0.01, ¥**p < 0.05, *p < 0.10.
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Our main variables of interest—industrial specialization (1/x3) and fisheries specialization (1/x4) (as
inverse diversification)—demonstrate their relevance to economic growth. Notably, fisheries specialization
shows its potential role in influencing the economic growth of local economies in fishing communities beyond
the fishing sector. To further clarify how these specialization measures affect community economic growth
and growth instability, we tested the marginal product using Equation (14), based on the estimated distance
function elasticities of specialization measures, economic instability, and economic growth via the implicit

function theorem.

Table 3: Test results for the normalized M RTj ,,

(D @ €) S) 2*) S
NMRT,,,, 2.315%%  238]%#% 2350%%% 2009%%* 2,064%* 20]18%**
(0.442)  (0457)  (0.442)  (0.379)  (0.392)  (0.376)

Standard errors in parentheses. ***p < 0.01, **p < 0.05, *p < 0.10.

For computing the marginal product on employment growth, the distance function elasticity of economic
growth (ep,,) was recovered using the homogeneity condition in Equation . Table below presents the
test results of the computed marginal product of industrial specialization on the employment growth of fishing
communities. The overall positive and statistically significant marginal product confirms this relationship
between specialization and growth. From the perspective of industrial diversification, this finding suggests
that diversification may reduce economic returns. Overall, the statistical significance of the marginal product
of industrial specialization on economic growth demonstrates that specialization drives higher economic
growth in fishing communities.

Table 4: Test results for the normalized M P, .,

() 2 3 () 2% (3*)
NMPy ,, 0.020% 0.021* 0.025%* 0.020 0.021 0.026*
(0.011) (0.011) (0.012) (0.013) (0.013) (0.013)

Standard errors in parentheses. ***p < 0.01, **p < 0.05, *p < 0.10.

As shown in Table [5| results for fisheries specialization are similar and, in many cases, exhibit higher
statistical significance. The computed marginal product of fisheries specialization, M Py, ,, is strongly
significant across all specifications, with a magnitude generally 2-2.5 times lower than that of industrial
specialization. Although its effect is smaller than that of industrial specialization, the same interpretation
applies: fisheries specialization contributes to higher economic growth in fishing communities beyond the

fishing sector. Overall, these findings indicate that specialization—whether in the broader economy or the
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fishing sector—yields higher economic returns in the local economies of Alaskan fishing communities.
Equivalently, diversification (the inverse of specialization) in either fisheries or the local economy reduces

economic growth.

Table 5: Test results for the normalized M Py, y,

(1) () (3) (1%) (2%) (3%)
NMP, ., 0.010%% 0.010% 0.010*% 0.009%%% 0.009%%* 0.010%**
(0.003)  (0.002)  (0.003)  (0.003)  (0.003)  (0.003)

Standard errors in parentheses. ***p < 0.01, **p < 0.05, *p < 0.10.

We also test the marginal products of industrial and fisheries specialization with respect to the undesirable
output, economic instability. These marginal products, MP; ., = aa_; and MP; ,, = %, are obtained via

the chain rule as the product of the output trade-off and the effect of specialization on growth:

s 9y

mp,,, = 2.
Sk Oy Oxy

— MRT,,-MP, ., ke{3,4},

because a change in an input first affects the desirable output y (through M P, ., ), which in turn affects the

undesirable output s (through MRT ).

Table 6: Test results for normalized M Py y,

&) &) 3) (1) (2%) (3%)
NMPg ., 0.049* 0.051* 0.059** 0.038  0.043* 0.052**
(0.027) (0.028) (0.028) (0.026) (0.026) (0.026)

Standard errors in parentheses. ***p < 0.01, **p < 0.05, *p < 0.10.

The test results for M Py  ,—the marginal product of industrial specialization on economic instabil-
ity—generally show a statistically significant positive relationship. Thus, while more industrially specialized
fishing communities in Alaska benefit from higher economic growth, they must also contend with greater
instability. Interpreting specialization inversely as diversification, communities with more diversified local
economies experience greater stability, albeit with a moderate reduction in growth. We also test the marginal
product of fisheries specialization; results in Table[/|are consistent with those for industrial specialization.

In sum, both types of specialization (and, inversely, diversification)—in fisheries and in the broader
industrial structure—affect local economic performance: specialization raises growth but is associated with
higher instability, whereas diversification improves stability at the cost of some growth. The magnitude of

these effects is larger for industrial structure than for fisheries, which is expected given the direct relevance of
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Table 7: Test results for normalized M P

(1) (2) (3) (1%) (2%) (3%)
NMP, ., 0.024%%% 0023%% (.024%%% 0.019%%% (0185 0.019%*
(0.007)  (0.007)  (0.007)  (0.006)  (0.006)  (0.006)

Standard errors in parentheses. ***p < 0.01, **p < 0.05, *p < 0.10.

industrial composition to the local economy, while fisheries diversification primarily influences the fishing
sector with second-order effects on the broader economy.

The interaction-term coefficients between inputs, ag;, capture complementary and substitution relation-
ships in the production process (Morrison-Paul et al., [2000; |Cuesta et al., [2009). Following Morrison-Paul
et al. (2000f], a positive coefficient ay; > 0 indicates substitution, where the marginal product of input k
decreases as input [ increases (by symmetry, ax; = ayi). Conversely, a negative coefficient ay; < 0 indicates
complementarity, where the marginal product of input k increases with input /.

A key result is the significance of the interaction between fisheries and industrial specialization. Estimates
for a4 indicate substitution between these inputs: statistically significant in the EHDF and marginally
significant in the HDF (p < 0.13 for HDF (1)—(3)). This suggests that fisheries and industrial specialization
can substitute for each other, with implications for economic development in Alaskan fishing communities.

If physical or economic constraints limit specialization in the local economy, communities may instead
specialize in fisheries to achieve growth. Conversely, if fisheries specialization is constrained by ecological or
market factors, communities may specialize within a particular industrial sector. Thus, when specialization
in one domain is constrained by geography or resource availability, communities may compensate by
specializing in the other.

From the diversification perspective (the inverse of specialization), this implies complementarity between
specialization and diversification across fisheries and the local fishing economy. Specializing in one domain
while diversifying the other can support sustainable growth with greater stability. Balancing specialization
and diversification across industrial sectors and fisheries creates a complementary dynamic that fosters

stability without sacrificing growthﬁ

SUnlike most of the distance-function literature, which uses a negative sign on the left-hand side for normalization, Morrison-
Paul et al.| (2000) use a positive sign to simplify interpretation of production relationships. By flipping the sign of our estimated
coeflicients, we provide an interpretation consistent with Morrison-Paul et al.|(2000). Similarly, [Cuesta et al.|(2009) use a negative
sign but provide the same interpretation.

6 As a robustness check, we re-estimate this complementary relationship using a direct diversification measure and assess which
direction of complementarity is clearer (i.e., industrial diversification & fisheries specialization vs. industrial specialization &
fisheries diversification).
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In the SFA inefficiency equations that allow for heteroskedastic inefficiency with respect to fisheries-
related community factors, the fisheries-permit share (a fisheries concentration index) shows a negative sign
consistently, which aligns with challenges faced by small fishing communities with limited access to fishing-
support services (Lavoie and Himes-Cornell, 2019)). Survey and network evidence indicate that remote
Alaskan fishing communities rely heavily on larger hub communities (e.g., Anchorage, Homer, Wrangell,
Fairbanks, Ketchikan, Sitka, Kodiak) for infrastructure and services; this reliance is associated with higher
fishing costs and reduced adaptive capacity to climate-related shocks.

Lastly, the fishing-dependency variable is positively associated with inefficiency, indicating that higher
dependence on fishing coincides with greater distance from the production frontier. This association is
consistent with lower economic growth and greater instability, underscoring that heavy reliance on natural

resources may hinder efficient growth in fishing communities.

5.1 Robustness check 1: Testing endogeneity of input variables

Our objective is to develop a comprehensive understanding of how industrial and fisheries diversification
shape growth and stability in local fishing economies, and how they interact with other growth factors
in Alaska’s fishing communities, rather than to identify variable-specific causal effects. Nevertheless,
endogeneity remains a concern that could complicate interpretation.

We have argued that our HDF estimates are relatively robust to endogeneity, particularly simultaneity.
Even so, unobserved community characteristics may influence input variables and economic instability, and
the limited literature on community growth determinants, together with scarce community-level data, leaves
residual uncertainty.

Empirical studies often mitigate endogeneity by incorporating additional data (e.g., input prices) or by
using instrumental variables (IV) within SFA (Dalheimer et al., [2024} [Sauer and Latacz-Lohmann, 2015
Atkinson et al., |2003). Applying IV methods in SFA is challenging: valid community-level instruments
are difficult to find; even with valid instruments, our setting faces (1) a modest cross-sectional sample
(few communities), (2) substantial consumption of degrees of freedom due to numerous parameters, and
(3) potential weak-instrument problems, particularly in the translog HDF. As |Amsler et al.| (2016) note,
addressing endogeneity in a translog specification with multiple endogenous variables requires instruments
for nonlinearly transformed terms (squares and interactions), which may be weak; in such cases, two-stage

estimators (e.g., 2SLS) can be statistically inefficient.
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A potential alternative is the True Fixed-Effects (TFE) model in SFA (Greenel |2005alb), which can
address omitted time-invariant community factors. However, TFE estimation suffers from the incidental-
parameter problem in panels with many communities (N large) and a fixed, finite time dimension (7" small).

As a robustness check, we therefore test for potential endogeneity using the Bayesian Mundlak—
Chamberlain device (MCD), which models unobserved heterogeneity and helps validate our results. Fol-
lowing |Dalheimer et al.| (2024), who apply an HDF framework with comparable inputs, desirable outputs,
and undesirable outputs, we implement the Bayesian MCD. The device originates with|Mundlak| (1978) and
Chamberlain| (1982) and is extended to a Bayesian framework by |Griffiths and Hajargasht (2016); it is well
suited to SFA contexts.

The Mundlak—Chamberlain device (MCD) addresses endogeneity in panel models by modeling the
correlation between unit effects and observed regressors. Like fixed effects, it mitigates bias from omitted
variables correlated with both the dependent variable and the inputs. Relative to fixed effects, MCD estimation
(1) preserves between variation, improving efficiency; (2) flexibly accommodates nonlinear models while
capturing unobserved heterogeneity; and (3) avoids the incidental-parameter problem because it does not
estimate unit-specific intercepts (Wooldridge, [2010)).

Building on this idea, (Griffiths and Hajargasht| (2016)) propose a Bayesian test for input endogeneity in

SFA, subsequently applied by Dalheimer et al.|(2024). The model is:

Iny;; = In f(Xir, 8ie3 B) — i + Virs (17

H(u;) = %6 + lir, (18)

where H(u;) = In(u;) and f(-) is a Cobb-Douglas distance function[| The inefficiency specification H(-)
includes time-averaged values x; of industrial (x3) and fisheries specialization (x4) to test for endogeneity.
Unlike frequentist confidence intervals, Bayesian credible intervals admit a direct probabilistic interpretation
of parameter uncertainty given the data and priors.

Statistically significant posterior means in the inefficiency equation within a given credible interval (e.g.,
95%) indicate potential endogeneity (Griffiths and Hajargasht, 2016; |Dalheimer et al., [2024)). Conversely,

insignificance—evidenced by a large posterior standard deviation relative to the mean—implies weak evi-

"Following (Griffiths and Hajargasht| (2016) and [Dalheimer et al| (2024), we adopt Cobb—Douglas for computational efficiency
in sampling and convergence.
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dence of endogeneity. In Bayesian terms, the credible interval for the correlation parameters ¢ quantifies this
uncertainty; wide intervals centered near zero suggest weak correlation.

We adopt the priors in |Griffiths and Hajargasht (2016) for the frontier parameters 8 and the inefficiency
parameters ¢. To form the panel, we split the study period into two blocks, 20002008 and 2009-2016,
yielding a structure that balances long-run trends and data availability. After excluding communities with
insufficient time observations, the sample comprises N = 165 communities observed over T = 2 periods

(NT = 330). Table[§|reports the Bayesian MCD estimates.

Table 8: Results from Bayesian Mundlak—-Chamberlain device estimation.

Iny; Posterior Mean Posterior SD
Frontier

Const. 0.233 0.208
Inx; (Population) 2.770" 0.642
Inx, (Wage Income per Capita) 0.413 0.457
Inx; (Ind. Specialization) 1.707* 0.647
Inxs (Fish. Specialization) -0.759 0.430
Ins; (Instability) 15.790" 6.829
Inefficiency

Const. -1.8217 0.918
Inxs 0.008 1.409
Inxy 0.006 1.422
Sample Observations 330

** Significant at the 95% credible interval level.

We find no strong evidence of endogeneity for industrial or fisheries specialization, suggesting that
endogeneity is not a major concern in our HDF model. The Bayesian estimates closely align with the
HDF results: population (x;) and industrial specialization (x3) have positive effects on economic growth,
while wage per capita (x») is insignificant. Fisheries specialization (x4) is not significant, which may reflect
the short panel length or specification differences (e.g., inclusion of quadratic terms). Instability shows a
significant positive association with employment growth, reinforcing the link between higher growth and

greater instability. Overall, the Bayesian MCD results support our main findings.
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5.2 Robustness check 2: Estimation with direct diversification measures

In our main estimation, we invert industrial and fisheries diversification to interpret specialization and
to maintain the non-increasing property of inputs, consistent with conventional input—output relationships
in the HDF framework. To confirm robustness, we also estimate the model using direct diversification
measures. This provides direct evidence of the complementary relationship between fisheries diversification
(or specialization) and economic specialization (or diversification), rather than relying solely on indirect
inference from specialization in the main analysis. Switching from fisheries specialization to its direct
diversification counterpart yields coefficients with the same significance but opposite signs.

Complete results appear in Table in Appendix |C] which reports HDF estimates using the direct
diversification measure (fisheries diversification, the inverse of specialization). The results align with
our primary findings: the signs and significance of fisheries diversification and its interaction terms are
consistent, with coefficients of similar magnitude but opposite signs. In addition, the interaction between
fisheries diversification and economic specialization reaffirms the complementary relationship between

diversification and specialization.

5.3 Robustness check 3: Estimation with alternative diversification measures using the

Herfindahl-Hirschman index

We examine the sensitivity of our results to alternative diversification measures. In place of our de-
fault measure (based on the Shannon diversity index), we construct an alternative index using the inverse
Herfindahl-Hirschman Index (HHI), also known as the Simpson diversity index, following Kluge (2018).

Like the Shannon index, this measure is lower-bounded by 1. We define the inverse-HHI diversification

HHI

index, Div! ™", using sector shares P;., (as in Equation (2))) as:

DiviHI — 1 i _ (19)
c N .
T t=1 Zi:l P;

ict

Table in Appendix [D] reports estimates using this alternative index (converted to a specialization
measure for estimation). Results are qualitatively consistent with the baseline that uses the Shannon index,

differing only slightly in magnitude because the two measures are on different scalesﬂ

8 A simple correlation analysis shows strong agreement between the two indices: the correlation coefficient is 0.97 for both
industrial and fisheries diversification. These findings confirm that our main results are robust to the choice of diversification
measure.
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6 Discussion

The growth and stability of Alaska’s local fishing economies are critical for sustaining fishing communities
and fishers’ livelihoods as climate-induced changes reshape ocean and coastal systems. Prior research on
fisheries diversification has largely focused on stabilizing revenue within the fishing sector, often extrapolating
broader community effects without direct empirical evidence. We address this gap by providing empirical
evidence that fisheries diversification—alongside industrial diversification within the local economy—shapes
the growth and stability of local fishing economies. In particular, both fisheries and industrial diversification
are associated with greater stability in the local economies of fishing communities.

Our research provides the first empirical evidence that industrial and fisheries diversification are inter-
linked with each other and with broader community growth factors in shaping local economic growth. We
find potential synergistic effects, where fisheries specialization and industrial diversification reinforce one
another. Figure 4] shows the marginal product of each specialization across varying diversification levels in
the complementary sector.

Figure [4a]shows that the marginal product of industrial specialization increases monotonically with little
evidence of diminishing returns. Greater fisheries diversification shifts this curve upward, indicating synergy;
however, statistical precision is weaker for the industrial specialization estimates, as reflected in wide 95%
confidence intervals. For fisheries specialization (Figure b)), the marginal product exhibits diminishing
returns: at very high levels of specialization, additional specialization can reduce local economic growth.
As with industrial specialization, greater industrial diversification raises the marginal product curve and
moderates the rate of diminishing returns. Moreover, the synergistic direction is statistically clearer for
fisheries specialization than the complementary effect associated with industrial specialization. Overall, our
results—supported by both estimations and visualizations—demonstrate that economic growth and stability
in local fishing economies, driven by industrial and fisheries diversification, exhibit heterogeneous responses
significantly influenced by the interaction with diversification levels in the complementary counterpart,
whether in fisheries or the industrial structure of communities.

Previous studies have focused on the stabilizing effects of diversification while overlooking its trade-off
with long-term growth. This narrow focus risks neglecting the vital role of economic growth in sustaining
local fishing economies. Our findings show that, on average, Alaskan fishing communities have experienced

a zero-growth steady state in employment, suggesting that achieving stability at the expense of growth
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Figure 4: Marginal products of industrial and fisheries specialization with complementary effects. Dashed
lines denote 95% confidence intervals computed via the delta method (Appendix [E). Estimates are based on
specification (3) in Table 2] and are evaluated at the sample means of the other covariates. We use the HDF
specification for interpretability because the EHDF case normalizes input x.

may undermine sustainability. Therefore, a balanced approach that fosters both economic stability and
growth—whether through fisheries diversification or a specialized industrial structure—is essential for long-
term viability.

Sethi et al.|(2014)) noted that geographical factors may constrain fisheries diversification, thus limiting its
potential to drive economic stability or growth in certain contexts. In line with this, our findings suggest that

economic stability can still be achieved through industrial structural improvements, provided that geographic
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constraints do not also restrict industrial reform. Communities can pursue industrial specialization for direct
growth or diversification to enhance growth—particularly in support of specialized fisheries through the
complementary effects shown in Figure 4] This dual-track strategy enables fishing communities to achieve
balanced economic growth and stability by adapting fisheries and industrial structures to their specific
community contexts, minimizing trade-offs between economic growth and stability.

Figure [] further reveals that the complementary effects between fisheries specialization and industrial
diversification are more evident than those between industrial specialization and fisheries diversification.
While specializing in high-yield fisheries can drive revenue growth and generate spillover effects, it also
heightens vulnerability to market and ecological shocks. A diversified industrial base—including processing,
logistics, tourism, and trade—provides essential complementary services and alternative income sources
during fisheries downturns. Consequently, fisheries-specialized communities may need to enhance resilience
against a rapidly changing fishing environment by pursuing industrial diversification.

Overall, our research offers several key policy insights. First, fisheries policies alone are insufficient; they
must be integrated with broader industrial development strategies to sustain local fishing economies. Second,
place-based interventions that promote cross-sector investments and industrial diversification are essential
for balancing the trade-off between economic growth and stability. Finally, tailored workforce development
and community-specific strategies are crucial, as the optimal transformation of industrial structure depends
on local conditions. Collectively, these insights highlight the need for a comprehensive, locally attuned

policy framework to foster resilient and sustainable economic growth in Alaska’s fishing communities.
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Appendix
A Estimation procedure details in stochastic frontier analysis

Our SFA employs a simultaneous estimation of the efficient frontier and inefficiency equations using Max-
imum Likelihood Estimation (MLE), avoiding the biases of the traditional two-step approach. To ensure
reliable results, we address three critical factors: (i) the distributional assumption for the inefficiency term,
(ii) initial parameter selection, and (iii) the optimization algorithm. These steps are essential to prevent
convergence issues, avoid local maxima, and produce robust parameter estimates.

To determine initial values for maximizing the likelihood function, we followed the approach outlined by
Kumbhakar et al.| (2015). Specifically, we began by performing Ordinary Least Squares (OLS) estimations
on both the frontier and inefficiency equations. The resulting coefficients were then used as initial values
for the subsequent SFA process. This method provides a robust foundation for the optimization process and
improves the reliability and precision of our estimations, particularly in cases where the default initial values
generated by STATA may not perform adequately.

After evaluating both half-normal and truncated-normal distributions and finding non-significant results
for the mean locus of the truncated-normal distribution, we opted for the half-normal distribution as proposed
by |Aigner et al.| (1977), which is generally employed in the HDF literature. This choice was made for
its simplicity and effectiveness in estimating the likelihood function, attributed to its single-parameter
characteristic, unlike the two-parameter (mean locus and standard deviation) structure of the truncated-
normal distribution P

The selection of an optimization algorithm for the likelihood function significantly influences the stability
and convergence of the likelihood function. Within our estimation environment, specifically STATA, we
utilized four different optimization algorithms After experimenting with these algorithms, we identified
those that exhibited stable convergence of the likelihood function, along with the highest likelihood value
upon stable convergence. This approach ensures that our choice of optimization algorithm not only promotes

efficient convergence but also optimizes the accuracy and reliability of our estimation results.

“Exponential and gamma distributions were also considered but the half-normal and truncated-normal distributions showed
superior convergence in our preliminary analysis, leading us to focus on these distributions.

10Newton-Raphson, Broyden-Fletcher—Goldfarb—Shanno (BFGS), Davidon-Fletcher—Powell (DFP), and
Berndt-Hall-Hall-Hausman (BHHH).

36



B Measuring economic growth rate and economic instability

In our study, we utilized the geometric growth rate of employment as our measure for average growth. This
metric is often employed to present a more accurate long-term performance of a portfolio. It is based on the
principle that performance in one period affects subsequent periods. Conversely, the arithmetic average may
not accurately measure long-term growth when economic volatility is prevalent.

We adopt the methodologies utilized by [Lande|(1994), Chandra (2002), and [Hatner (2019). To elucidate
this approach, we begin with a continuous-time exponential model for employment growth rate, which is

expressed as:

Emp; = Empy - Pt

Here, Empg represents the initial employment at time ¢t = 0, and S is the instantaneous employment growth

rate. By logarithmically transforming both sides of the equation, we obtain:

log(Emp;) = Bo + B1 -t
where By = log(Empy), treated as a constant. This log-transformed equation, after including an error term
€, is estimated using Ordinary Least Squares (OLS) as follows:
log(Emp;) = o+ B1 -1 + &

With the estimated coefficient of the time trend, 53}, interpreted as the average instantaneous growth rate

of employment, we difference the estimated equation from ¢ — 1 to ¢:

log(Emp;) —log(Emp;_) = Bi

By exponentiating the above equation and recognizing that the discrete-time version of exponential

growth corresponds to the geometric growth rate, we establish the following relationship:

(1+ u) = exp(B1)
where p represents the average annual geometric growth rate of employment for a community. Since the
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HDF employs a log-transformation to ensure all values remain positive, we use the average annual geometric
growth return, y. = exp(i, ¢), where the subscript ¢ denotes each community.

Subsequently, instability is quantified as the standard deviation of residuals from an OLS estimation
based on the previous log-time trend equation. The fitted regression line on the time trend captures the
long-term (geometric) return; thus, larger deviations from this fitted line, whether positive or negative, are
interpreted as economic instability associated with year-to-year economic growth. The sum of squared

residuals is computed as follows:

T T Em 2
Z (lnEmp, — lnEﬁlpt)2 = Z (ln Apt>
t=1 t=1

Along with the geometric mean, the formula for geometric standard deviation (GSD), o, is expressed
as an exponentiated arithmetic mean of the logged differences between some values A,, and their geometric

mean u, over a number of observations N as follows:

1S AN
GSD = o, = exp — Z (ln —")
anl Hg

Following this formula, the equivalent growth instability of fishing community ¢, as the geometric
standard deviation of the long-term growth trend, can be derived using the fitted mean regression line on
time trend (In(Em Py = Bo + B1 - 1), as follows. The economic instability of community ¢, represented as

the geometric standard deviation of economic growth, is given by:

T 2
1 E
Tc = S¢ = €Xp ? Z (ln mpl)

=1 Emp,
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C Robustness check using direct diversification measure

Table C1: Estimation results for robustness check: using fisheries diversification

(h (2) (3) (1%) (2%) (3%)
HDF EHDF
Population (ay) -0.017#*%*  -0.018*** -0.019%** -0.018*** -0.018*%** -0.020%***
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
Wage/Capita Inc. (a») 0.002 0.001 -0.000 0.001 0.000 -0.001
(0.004) (0.004) (0.004) (0.004) (0.004) (0.004)
Ind. Specialization (@3) -0.014* -0.015%* -0.018** -0.012 -0.013* -0.016%*
(0.008) (0.008) (0.008) (0.008) (0.008) (0.008)
Fish. Diversification (a4) 0.007***  0.007***  0.007***  0.006*%**  0.006%**  0.006%**
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
Population sq. (a11) 0.008***  (0.008***  0.009***  (0.008***  (0.008***  (0.008%*%*
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
Wage/Capita Inc. sq. (a2;) -0.021 -0.023* -0.027%* -0.020 -0.022 -0.026*
(0.014) (0.014) (0.014) (0.014) (0.014) (0.013)
Ind. Specialization sq. (@33) -0.002 0.001 -0.005 -0.018 -0.016 -0.021
(0.045) (0.045) (0.045) (0.044) (0.044) (0.044)
Fish. Diversification sq. (@44) 0.010%* 0.009%* 0.010** 0.010** 0.009* 0.010%*
(0.005) (0.005) (0.005) (0.005) (0.005) (0.005)
Population * Wage/Capita Inc. (a]2) -0.006 -0.006 -0.007 -0.005 -0.004 -0.005
(0.004) (0.004) (0.004) (0.004) (0.004) (0.004)
Population * Ind. Special. (a3) 0.005 0.005 0.001 0.002 0.002 -0.002
(0.009) (0.009) (0.009) (0.009) (0.009) (0.009)
Population * Fish. Div. (a14) -0.008#**  -0,008***  -0.008*** -0,008*** -0.007*** -0.008%**
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
Wage/Capita Inc. * Ind. Special. (ay3) -0.017 -0.018 -0.023 -0.023 -0.025 -0.030
(0.019) (0.019) (0.019) (0.019) (0.019) (0.019)
Wage/Capita Inc. * Fish. Div. (a24) 0.003 0.003 0.004 0.001 0.001 0.002
(0.005) (0.005) (0.005) (0.005) (0.005) (0.005)
Econ Special. * Fish. Div. (a34) -0.015 -0.015 -0.013 -0.016%* -0.016%* -0.014
(0.010) (0.010) (0.010) (0.010) (0.010) (0.010)
Econ. Instability (d1) -0.302%*%*  -0.296%**  -(0.298***  -(032]1%*k* _(.314%** _(3]7F**
(0.040) (0.040) (0.039) (0.040) (0.039) (0.039)
Econ. Instability sq (611) 0.281 0.420 0.370 0.617 0.743 0.664
(0.912) (0.929) (0.942) (0.860) (0.875) (0.886)
Population * Econ. Instability (7711) -0.017 -0.014 -0.016 -0.007 -0.010 -0.007

0.041)  (0.041)  (0.041)  (0.040)  (0.041)  (0.040)
Wage/Capita Inc. * Econ. Instability (1721)  -0.416%%% _0.402%%% _0425%%% _0349%%% 033G+ 364+
(0.116)  (0.115)  (0.114)  (0.114)  (0.113)  (0.111)

Ind. Special. * Econ. Instability (1731) -0.073 -0.083 -0.116 -0.014 -0.022 -0.059
(0.167) (0.167) 0.167) (0.162) (0.163) (0.163)
Fish. Diversification * Econ. Instability (7741) 0.064 0.053 0.055 0.038 0.025 0.028
(0.050) (0.051) (0.051) (0.049) (0.050) (0.050)
Inefficiency
Broader Permit Share -0.720 -1.004 -0.717 -1.024*
(0.734) (0.644) (0.703) (0.618)
Fishing Earnings to Wage Income Ratio 0.051%%* 0.052%%*
(0.025) (0.023)
Observations 177 177 177 177 177 177

Standard errors in parentheses. ***p < 0.01, **p < 0.05, *p < 0.10.



D Robustness check using alternative diversification measure with inverse HHI index

Table D1: Estimation results for robustness check: using an alternative diversification measure (inverse HHI)

(1) (2) (3) (1%) (2%) (3%)
HDF EHDF
Population (ay) -0.017#*%*  -0.018*** -0.018*%** -0.018*** -0.018*%** -0.020%**
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
Wage/Capita Inc. (a») 0.002 0.001 0.000 0.001 0.000 -0.001
(0.004) (0.003) (0.004) (0.004) (0.004) (0.004)
Ind. Specialization (@3) -0.014* -0.015%*  -0.017** -0.012 -0.013* -0.016%*
(0.007) (0.007) (0.007) (0.008) (0.008) (0.008)
Fish. Diversification (a4) -0.009#**  -0.008***  -0.009%** -0.006*** -0.006%** -0.006%**
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
Population sq. (a11) 0.008***  0.008***  0.008***  (0.008***  (0.008***  (0.008%*%*
(0.001) (0.001) (0.001) (0.002) (0.002) (0.002)
Wage/Capita Inc. sq. (a22) -0.020 -0.023* -0.026* -0.020 -0.022 -0.026*
(0.014) (0.014) (0.013) (0.014) (0.014) (0.013)
Ind. Specialization sq. (@33) 0.015 0.018 0.017 -0.018 -0.016 -0.021
(0.047) (0.047) (0.047) (0.044) (0.044) (0.044)
Fish. Diversification sq. (@44) 0.012%* 0.011* 0.011%* 0.010%* 0.009* 0.010%*
(0.006) (0.006) (0.006) (0.005) (0.005) (0.005)
Population * Wage/Capita Inc. (a]2) -0.005 -0.005 -0.005 -0.005 -0.004 -0.005
(0.004) (0.004) (0.004) (0.004) (0.004) (0.004)
Population * Ind. Special. (a3) 0.007 0.008 0.005 0.002 0.002 -0.002
(0.008) (0.008) (0.008) (0.009) (0.009) (0.009)
Population * Fish. Div. (a14) 0.008***  0.008***  0.009*%**  (0.008*%**  0.007***  0.008%***
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003)
Wage/Capita Inc. * Ind. Special. (ay3) -0.009 -0.011 -0.013 -0.023 -0.025 -0.030
(0.019) (0.019) (0.019) (0.018) (0.019) (0.019)
Wage/Capita Inc. * Fish. Div. (a24) -0.004 -0.004 -0.005 -0.001 -0.001 0.002
(0.006) (0.006) (0.006) (0.005) (0.005) (0.005)
Econ Special. * Fish. Div. (a34) 0.018 0.018 0.016 -0.016%* -0.016%* -0.014
(0.011) (0.011) 0.011) (0.010) (0.010) (0.010)
Econ. Instability (d1) -0.307#*%*  -0.301%**  -0.303%** -0.321%*%* -(0.314%** (.3]7%**
(0.040) (0.040) (0.039) (0.040) (0.039) (0.039)
Econ. Instability sq. (611) 0.138 0.298 0.231 0.617 0.743 0.664
(0.897) (0.918) (0.935) (0.860) (0.875) (0.886)
Population * Econ. Instability (7711) -0.017 -0.015 -0.016 -0.007 -0.010 -0.007
(0.038) (0.038) (0.038) (0.040) (0.041) (0.040)
Wage/Capita Inc. * Econ. Instability (17,1) -0.454%*%  _0.440%**  -0.459%**%  -(0.349%*%* _(.336*** -(.364%**
(0.112) (0.111) 0.111) (0.114) (0.113) (0.111)
Ind. Special. * Econ. Instability (173;) -0.084 -0.098 -0.121 -0.014 -0.022 -0.059
(0.166) (0.167) (0.168) (0.162) (0.163) (0.163)
Fish. Diversification * Econ. Instability (1741) -0.078 -0.065 -0.066 -0.036 -0.025 -0.028
(0.055) (0.056) (0.057) (0.049) (0.050) (0.050)
Inefficiency
Broader Permit Share -0.728 -0.950 -0.717 -1.024%*
(0.695) (0.633) (0.703) (0.618)
Fishing Earnings to Wage Income Ratio 0.044* 0.052%%*
(0.026) (0.023)
Observations 177 177 177 177 177 177

Standard errors in parentheses. ***p < 0.01, **p < 0.05, *p < 0.10.



E Constructing 95% confidence intervals for M P, ., .,

We outline the detailed procedure for constructing a confidence interval for the marginal product (MP)
of input to output, calculated as the ratio of two distance elasticities. These elasticities are derived from
differentiating the hyperbolic distance function (HDF). Because the elasticities, except for the variable of
interest, are evaluated at their mean values, the remaining logged variables become zero after normalization
by geometric means. This approach allows us to examine how the MP changes with respect to a single
variable of interest—industrial or fisheries specialization—while holding all other factors constant (ceteris
paribus). For illustrative purposes, we focus on the procedure for industrial specialization. The distance

elasticities for industrial specialization and employment growth are presented below.

€D, x3 = a3 + @33 10g(x3)

€p,y = 1 + 61 + 131 log(x3)

Our goal is to compute the variance of M Py, 3, which is the ratio of these elasticities:

€D,x3
MP = R(fD,x3,ED,y) = — o

€D,y
To find the variance of R, we use the Delta Method, which provides an approximation for the variance
of a function of random variables. The Delta Method states that for a function g(@) of random variables 6,

the variance of g(@) can be approximated as:

Var[g(6)] ~ Vg(8) "£Vg(6)

where Vg(6) is the gradient vector of partial derivatives of g with respect to @, and X is the covariance
matrix of 6.

We begin by computing the partial derivatives of R with respect to ep 3 and €p y:

OR 1

a6D,x3 €D,y
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OR _ < €D,x3> _ €Dx3
I ) T2
O€p.y €D.y €D.y

Applying the Delta Method, the variance of R is approximated as:

Var(R) z( oR >2Var(eD,x3)+< oR

a€D,x3 afD,y

2
> Var(ED,y)+2< oR ) < oR >COV(ED,x3,ED,y)

aED,xg 8eD,y

Substituting the expressions for the partial derivatives:

5 2
1 1
Var(R) ~ <——> Var(ep x3) + <6D2’XS> Var(ep,y) + 2 (——) <6D2’XS> Cov(ep,x3, €p,y)

€D,y €Dy €D,y €Dy

Simplifying the expression:

2

Var(e € Var(ep.y) 2e Cov(e B

Var(R) ~ (ZD’X3) 4 D3 - Y/  “€D.x3 3(D,x3, D.y)
€.y €y .y

Next, we compute the variances of €p 3 and €p . Since €p 3 is a linear combination of a3 and a33, its

variance is:

Var(ep_3) = Var(a3) + [log(x3)]* Var(as3) + 21log(x3) Cov(as, @33)

However, as the covariance Cov(as3, @33) is negligible in our estimations, we simplify:

Var(ep.3) ~ Var(a3) + [log(x3)]* Var(as33)

Similarly, the variance of €p  is:

Var(ep,y) = Var(d;) + [log(xfi)]2 Var(n31) + 2log(x3) Cov(61,131)

Assuming Cov(d1,131) is negligible, we have:

Var(ep.y) ~ Var(d;) + [log(x3)]* Var(n3:)
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The covariance between €p 3 and ep  is given by:

Cov(ep x3, €p,y) = Cov(az + a33log(x3), 81 + 131 log(x3))

Expanding this covariance:

Cov(ep,x3,€p,y) = Cov(as,d1) + log(x3)[Cov(asz, n31) + Cov(ass,d1)] + [log()c3)]2 Cov(as3,n31)

In our estimation, the covariance Cov(ep 3, €p, y) consists of covariances between various parameters,
a3, 01,131, 33, which include a mix of negative and positive values, thus, the sum of the terms are close to
zero. These terms are multiplied by log(x3) and [log(x3)]?, further reducing their already small magnitude.
For simplicity and based on this justification, we assume the covariance between these two elasticities is

negligible, effectively zero:

Cov(ep x3.€p,y) ~ 0

With this assumption, the simplified variance of R, derived using the delta method, becomes:

2
Var(ep x3 €D, 3var(5D,y>
Var(MPy y,) ~ (2 x3) a m

ED,y D,y

€

Once the variance is computed, the 95% confidence interval for the marginal product of x3 is constructed
using its root-squared value. For the marginal product related to fisheries specialization, an identical

procedure is followed.
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