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Abstract

Climate change poses serious challenges to the growth and stability of fishing communities. While a diverse

portfolio of fisheries has been shown to stabilize income for individual fishers and communities, evidence

regarding its role in broader local economies remains limited. This study addresses this gap by examining

how fisheries and industrial diversification shape economic growth and stability. Using a hyperbolic distance

function (HDF), we analyze 17 years of fisheries and economic data for 177 Alaskan fishing communities.

Our findings show that both fisheries and industrial diversification significantly affect employment growth

and the stability of local fishing economies. Economic stability often comes at the cost of reduced growth,

reflecting the risk-return trade-offs inherent in diversification. We also identify a complementary relation-

ship between industrial diversification and fisheries specialization. This dual-track strategy, which balances

diversification and specialization across fisheries and industrial sectors, enables communities to adapt their

economic structures to local circumstances while minimizing trade-offs between growth and stability. These

results suggest that policymakers should prioritize strategies that foster balanced diversification and special-

ization, tailored to community conditions, to strengthen resilience in the face of climate-related uncertainties.

Keywords: Fisheries diversification; Industrial diversification; Economic growth and instability; Climate

resilience; Hyperbolic distance function; Stochastic frontier analysis; Alaska.
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1 Introduction

Climate-induced changes in the ocean increasingly threaten the sustainability of coastal communities that

rely on fisheries. Shifts in the distribution and productivity of fish stocks compound existing pressures from

overexploitation, sea level rise, ocean acidification, and the globalization of the seafood trade (Anderson

et al., 2018; Pinsky et al., 2018; Free et al., 2019; Rogers et al., 2019). These challenges are particularly acute

in vulnerable communities, where declining and aging populations exacerbate risks of economic and social

instability (Himes-Cornell and Kasperski, 2015; Colburn et al., 2016; Blasiak et al., 2017). As traditional

fishing practices face growing uncertainties, the resilience of these communities depends on their ability to

adapt to changing coastal, demographic, and economic conditions (Birkenbach et al., 2023).

Diversifying fishing activities across multiple fisheries is a promising strategy for coastal communities

to adapt to the uncertainties of a changing marine environment. Just as a diversified portfolio of financial

assets reduces overall return variability (Markowitz, 1952), a well-diversified portfolio of fisheries revenue

streams can lower a community’s exposure to climate-induced shocks, particularly when shocks affect fish

populations and markets asynchronously. Extensive research supports this stabilizing effect, showing that

diversification can buffer fluctuations in commercial fisheries and the livelihoods they support (Kasperski

and Holland, 2013; Sethi et al., 2014; Holland et al., 2017; Young et al., 2019; Fisher et al., 2021; Abbott

et al., 2023). Consequently, many studies emphasize harvesting diverse fisheries and adapting portfolios to

changing conditions as a critical means of stabilizing local economies that depend on fisheries (Cline et al.,

2017; Bris et al., 2018; Salgueiro-Otero et al., 2022).

While diversifying fisheries portfolios can support adaptation, it entails notable challenges. Most fisheries

are not open-access and require fishers to purchase permits, which can be prohibitively expensive (Holland

and Kasperski, 2016). Limited access to capital further constrains fishers’ ability to invest in permits and

expand fishing opportunities (Olson, 2011). Diversification may also dilute the knowledge and efficiencies

gained through specialization, potentially reducing overall returns (Anderson et al., 2017). Geographic and

ecological constraints matter as well: in regions with fewer or more volatile local fisheries, communities

have limited options for constructing a diversified portfolio, leaving them less able to capture diversification

benefits (Sethi et al., 2014; Young et al., 2019). In addition, as fisheries management has become more

prescriptive to address overfishing and overcapacity, the scope for diversifying across fisheries has narrowed,

and diversification has declined in many parts of the world (Holland et al., 2017; Abbott et al., 2023).
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An important uncertainty in assessing the buffering role of fisheries diversification concerns the position

of commercial fishing within the broader local economy. In many regions, the economic prominence of

commercial fishing is declining as coastal communities face increasing competition for limited offshore space

from aquaculture, tourism, offshore wind energy, and resource extraction (FAO, 2024). Future resilience

will likely hinge on communities’ ability to adapt to a shifting economic landscape shaped by emerging

marine industries. Just as fisheries diversification can stabilize fishing revenues, industrial diversification

can provide broader economic stability by offsetting losses in one sector with gains in others (Chandra, 2002,

2003; Kluge, 2018; Hafner, 2019). Diversifying across sectors reduces reliance on fisheries and mitigates

exposure to fluctuations in fish populations and seafood markets. Communities that successfully diversify

their economies and adjust industrial portfolios toward emerging marine sectors are therefore more likely to

achieve greater economic stability and growth (van Putten et al., 2016).

Empirical evidence on the roles of fisheries and industrial diversification in the stability and growth of

local fishing economies remains limited. Prior research has largely examined the stabilizing effect of fisheries

diversification on fishing revenues, with less attention to local economic outcomes such as employment or

wages (Sethi et al., 2014; Cline et al., 2017; Young et al., 2019; Fisher et al., 2021). Moreover, many

studies emphasize reduced instability while overlooking implications for returns or growth, despite the well-

established trade-off between stability and growth in modern portfolio theory (Markowitz, 1952). Examining

the joint dynamics of economic growth, instability, and diversification is therefore essential for a holistic

understanding of these trade-offs in coastal economies and for informing policies that support adaptation to

a changing marine environment.

In this study, we examine how fisheries and industrial diversification contribute to long-term growth

and stability in local fishing economies. We focus on Alaska’s fishing communities, which accounted

for 60% of U.S. domestic seafood landings in 2020 (NOAA, 2022). These communities face significant

climate-related challenges, including warming ocean temperatures, ocean acidification, shifting fish-stock

distributions, and increased price volatility (Himes-Cornell and Hoelting, 2015; Kasperski and Holland,

2013). Using 17 years of employment and fishing revenue data from 177 communities, we estimate the

trade-off between employment growth and stability with a hyperbolic distance function (HDF) adapted from

production economics. The HDF identifies the frontier of efficient combinations of employment growth and

stability and, in turn, allows us to characterize how fisheries and industrial diversification shape efficient

growth–stability outcomes. This framework provides new insight into the growth–stability relationship and
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the interaction between fisheries and industrial diversification in fishing communities.

Our findings show that both fisheries and industrial diversification significantly shape employment growth

and stability. Economic stability often comes at the cost of lower growth, reflecting the risk–return trade-offs

inherent in diversification. We also identify a complementary relationship between industrial diversification

and fisheries specialization. A dual-track strategy that balances specialization and diversification across fish-

eries and industrial sectors enables communities to adapt their economic structures to local circumstances

while minimizing growth–stability trade-offs. Our results suggest that policymakers should prioritize strate-

gies that foster balanced diversification and specialization across fisheries and industrial sectors to build

resilience in fishing communities facing climate-related uncertainties.

2 Empirical setting and data

Alaska offers a valuable context for studying how fisheries and industrial diversification shape local economic

growth and stability. The state’s commercial fishing sector is substantial, generating $5.2 billion in wholesale

revenues in 2022 and employing 48,000 workers, representing 66% of manufacturing jobs (ASMI, 2024).

Its economic impact is significant: a 10% increase in fishery earnings raises resident income by 0.7% (i.e.,

$1.54 per additional dollar earned) (Watson et al., 2021). At the same time, Alaska’s economy is not solely

dependent on fishing. Since the 1980s, the oil and gas sector has been dominant, and tourism, shipping,

transportation, and the public sector also play vital roles. These industries often surpass fishing as primary

sources of employment in coastal communities, underscoring the importance of industrial diversification for

local economies.

Alaska is also a compelling case study because unique data measure employment and wages by workers’

place of residence. Traditional datasets, such as the Bureau of Labor Statistics’ Quarterly Census of

Employment and Wages (QCEW), typically report employment and wage statistics by place of work and

at aggregated geographies such as the county. This approach presents two challenges. First, county-

level statistics can obscure meaningful empirical relationships, particularly in regions like Alaska and the

Western U.S., where counties are geographically large and encompass heterogeneous communities. Second,

discrepancies between where individuals live and work complicate inferences about people rather than places

(Guettabi and James, 2020; Jacobsen et al., 2023).

The Alaska Local and Regional Information (ALARI) database addresses these challenges by reporting
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employment and wage data by industrial sector measured at workers’ places of residence. This approach is

enabled by the Alaska Department of Labor and Workforce Development’s (AKDOL) linkage of unemploy-

ment insurance records (also used in the QCEW) with Alaska’s Permanent Fund Dividend (PFD) application

data. The PFD, paid annually to eligible residents who have lived in the state for a full calendar year and

intend to remain indefinitely, includes applicants’ residential addresses. This linkage provides granular,

community-level insight into employment and wage patterns and offers a basis for examining how fisheries

and industrial diversification relate to local economic growth and stability.

We compile a comprehensive dataset of economic and commercial fishing variables for all Alaskan

communities involved in commercial fisheries between 2000 and 2016. Data on permit-owner earnings

are sourced from the Alaska Commercial Fisheries Entry Commission (CFEC) Basic Information Tables,

which provide annual records of harvests and earnings for each community–fishery pair. Alaskan fisheries

are defined by species, fishing district, and gear type, and participation requires a fishery-specific permit

issued by the CFEC. In 2010, 20,275 permits were issued across 205 fisheries in Alaska, with permit-owner

communities identified by the addresses listed on their permits. The value of deliveries to local processors

is aggregated from individual delivery records reported through the Alaska Department of Fish and Game’s

(ADF&G) fish tickets and eLandings systems.

Information on local wages and employment comes from the ALARI database, which provides sector-

specific economic data for 344 Alaskan communities over the same period. Complementing these data,

demographic variables, such as average population size, were obtained from the Alaska Bureau of Labor

Statistics to give broader context to the local economies of fishing communities. For our analysis, we focus on

177 communities that consistently engaged in commercial fishing throughout the study period (2000-2016),

covering a period of 17 years.

It is important to clarify that ALARI records are derived from unemployment insurance data, which

exclude many categories of workers in the seafood industry. Commercial fishers and crew, who are typically

self-employed or contract workers, are not captured. Wages for upstream and downstream proprietors and

other self-employed individuals are also omitted. By contrast, wage and employment data for workers

employed by commercial processors are included in ALARI. This distinction is crucial for interpreting

which types of employment are affected by fisheries and industrial diversification. Accordingly, we do not

consider the direct effect of fisheries diversification on fisheries employment.

A further consideration is that ALARI measures the number of individual workers rather than full-time
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equivalent (FTE) jobs. Because Alaska’s seafood industry is highly seasonal, many workers are employed

only for a few months each year. Our employment estimates may therefore differ from studies that report

FTE measures.

3 Diversification, growth, and growth instability in Alaskan communities

In this study, we use employment growth rather than GDP to measure economic growth because employment

data are available at a finer resolution (both geographically and by industry), whereas GDP is typically

reported only at broader geographies (e.g., state). Employment metrics therefore provide more detailed

micro-level insights into local fishing economies and align with our focus on industrial diversification, as

sector-level job trends capture economic shifts more consistently. We measure a community’s average

economic growth using the geometric growth return of employment, which captures compounding (as with

compound interest) and provides a more accurate view of long-run outcomes. Following Lande (1994),

Chandra (2002), and Hafner (2019), this measure is obtained by estimating: 1

logp𝐸𝑚𝑝𝑡 ,𝑐q “ 𝛽0,𝑐 ` 𝛽1,𝑐 ¨ 𝑡 ` 𝜖𝑡 ,𝑐, (1)

where 𝐸𝑚𝑝𝑡 ,𝑐 is employment in community 𝑐 at year 𝑡, and 𝛽1,𝑐 denotes the instantaneous employment

growth rate for community 𝑐. We convert this to an average annual geometric growth return, 1 ` 𝜇𝑐 “

expt𝛽1,𝑐u, where 𝜇𝑐 is community 𝑐’s geometric growth rate. Economic instability is quantified as the

standard deviation of the residuals from the ordinary least squares (OLS) estimate of the log-linear time

trend in Equation (1). The fitted trend captures the long-run (geometric) return. Larger positive or negative

deviations from this trend are interpreted as instability in year-to-year growth. Further details and justification

are provided in Appendix B.

Previous studies commonly measure diversification using the inverse Herfindahl–Hirschman Index (HHI)

or the Shannon diversity index (Kasperski and Holland, 2013; Holland and Kasperski, 2016; Sethi et al., 2014;

Kluge, 2018; Hafner, 2019). We adopt the Shannon diversity index, defined as the exponential of Shannon

entropy, to quantify industrial diversification. This measure has intuitive interpretation: if a community

achieves the same level of economic growth across 𝑁 industrial sectors and then doubles the number to 2𝑁

while maintaining the same growth, the index also doubles. It represents the effective number of perfectly
1This approach is also employed in reports by the World Bank (Chandra, 2002).
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balanced sectors within a community (Jost, 2006; Abbott et al., 2023).

We calculate this index from employment growth across 13 industrial sectors within a community, rather

than from employment levels.2 Formally,

𝐷𝑖𝑣𝑐 “
1
𝑇

𝑇
ÿ

𝑡“1
exp

˜

´

𝑁
ÿ

𝑖“1
𝑃𝑖𝑐𝑡 ln 𝑃𝑖𝑐𝑡

¸

, (2)

𝑃𝑖𝑐𝑡 “
|Δ𝐸𝑚𝑝𝑖𝑐𝑡 |

ř𝑁
𝑗“1 |Δ𝐸𝑚𝑝 𝑗𝑐𝑡 |

, (3)

where 𝑃𝑖𝑐𝑡 is the share of total employment growth contributed by sector 𝑖 in community 𝑐 in year 𝑡, and

Δ𝐸𝑚𝑝𝑖𝑐𝑡 is sector-𝑖 employment growth. The Shannon-based diversification measure in Equation (2) equals

the exponential of Shannon entropy evaluated on t𝑃𝑖𝑐𝑡u
𝑁
𝑖“1. It approaches 1 when a single sector dominates

and increases with diversification; 𝐷𝑖𝑣𝑐 averages this annual index over the 𝑇 years.

Kluge (2018) advocates growth-based diversification measures over traditional size-based measures (i.e.,

shares). Size-based indices can misleadingly encourage regions dominant in stable sectors to diversify into

more volatile ones, potentially reducing stability rather than enhancing it; they also fail to distinguish how

positive versus negative growth affects stability. As a result, size-based measures may mask underlying insta-

bility during periods of rapid sector-specific expansion or contraction, even when the industrial composition

appears unchanged. A growth-based approach more accurately captures variability in sector contributions

and provides a more reliable indicator of economic stability.

For fisheries diversification, we follow Sethi et al. (2014) and compute a Shannon diversity index based

on fishing permits. Although many studies use realized fishing revenues or landings, those metrics are

distorted by stochastic catch variation and price volatility. Using the number of active permits provides a

more stable, ex-ante measure of diversification that avoids noise from short-run fluctuations in catch volumes

and market conditions.

Table 1 reports summary statistics for the variables used in this study, calculated as averages over the

study period. Long-run economic growth, measured by the average annual geometric return of employment

in local fishing economies, is close to one, indicating near-zero growth. On average, employment in Alaska’s

fishing communities was largely stable or slightly declining, with an annual decrease of approximately 0.3%.

Industrial diversification averages 5.7 effective, perfectly balanced sectors based on the North American
2Our local fishing economy data classify industrial sectors using North American Industry Classification System (NAICS) codes,

which are also used for federal and state labor statistics.
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Table 1: Summary statistics

Variable N Mean SD Min Max

Employment Growth (Return) 177 0.997 0.019 0.919 1.060
Growth Instability 177 1.080 0.062 1.008 1.387
Industrial Diversification 177 5.747 1.881 1.354 8.996
Fisheries Diversification 177 3.601 3.596 1.000 19.962
Population (Individuals) 177 2,908 21,457 13 282,781
Wage per Capita (USD) 177 9,998 4,313 1,325 27,362
Fishing Permit Share within Borough 177 0.151 0.246 0.002 1.000
Fishing Earnings to Wage Income Ratio 177 0.397 0.955 0.000 7.998

Notes: All values are averages over the study period.

Industry Classification System (NAICS). Fisheries diversification indicates typical engagement in 3–4 distinct

fisheries per community, with notable heterogeneity across communities.

Population size across Alaskan fishing communities is highly dispersed, ranging from small settlements

such as Ugashik (roughly a dozen residents on average) to Anchorage, the largest population center. This

dispersion suggests that most fishing communities are moderately to sparsely populated. Fishing permit

shares (a measure of spatial fisheries concentration within a borough) indicate that most communities are

not dominant fishing hubs, whereas a few—including Sitka, Yakutat, Anchorage, and Juneau—emerge

as hotspots with concentrated permits. The fishing earnings-to-wage income ratio, a measure of fishing

dependency, points to moderate reliance on fishing: on average, revenue from the sector accounts for about

40% of total wage income from other industries, although dependence varies substantially, as reflected by

the high standard deviation.

Figure 1 presents spatial patterns and relationships among the main variables. Alaska’s fishing commu-

nities are generally concentrated along the coast in the Southwest, Southcentral (around the Gulf of Alaska),

and Southeast regions, with some inland communities along the Yukon River primarily for salmon fisheries.

Over the study period, employment growth was relatively steady overall, with higher growth in the Southwest

than elsewhere. In Southcentral, communities with higher instability are primarily along the Gulf of Alaska,

and these areas overlap with higher economic growth; however, in general, high growth does not strongly

coincide with high instability.

Industrial and fisheries diversification are positively correlated across communities. Communities in
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(a) Employment Growth Return (b) Growth Instability

(c) Industrial Diversification (d) Fisheries Diversification

Figure 1: Employment Growth, Instability, Industrial and Fisheries Diversification in Alaskan Fishing
Communities (2000-2016)

Western Alaska display low diversification in both industrial structure and fisheries yet are associated with

higher economic growth. This pattern suggests that more specialized regions (e.g., the Southwest) may be

driving growth. Finally, the relationship between diversification (both industrial and fisheries) and economic

instability is less distinct but generally negative. Communities along the Aleutian Islands (Bering Sea) and
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in Southeast with less diversification exhibit higher instability, consistent with the high-risk, high-return

implication of modern portfolio theory.

Figure 2 provides a closer look at the relationship between employment growth return, economic growth

instability, and diversification (industrial or fisheries). By plotting economic instability on the x-axis,

employment growth on the y-axis, and coloring each fishing community by diversification quantile (in 4

groups, from low to high), we further examine their relationship in detail.

(a) By industrial diversification quantiles (b) By fisheries diversification quantiles

Figure 2: Economic growth–instability portfolio profiles of Alaskan fishing communities by diversification
quantiles (2000–2016). Colors and shapes of dots represent industrial and fisheries diversification quantiles
(1st–4th).

In the left panel of Figure 2, the growth-instability portfolio for fishing communities is shown by

industrial diversification. The figure provides a couple of insights: First, the distribution of the fishing

communities’ risk-return portfolio appears to form a general minimum-variance frontier as suggested by

MPT. This indicates that the relationship between economic growth, as measured by employment in Alaska

fishing communities, and the associated economic instability is inherently non-linear.

Previous research has analyzed risk and return in fishing revenue, typically focusing on the risk-

diversification relationship using linear risk measures like the Coefficient of Variation (CV) of fishing

revenue (Sethi et al., 2014; Kasperski and Holland, 2013; Abbott et al., 2023; Gokhale et al., 2024). How-

ever, if a non-linear relationship between economic growth and instability exists, a linear approach may fail to

capture the true dynamics of risk-return-diversification. To address this limitation, our estimation approach

(described below) relaxes the linearity assumption and employs a more flexible functional form to better

understand the nuanced relationship between a community’s economic growth and instability.

Second, the figure illustrates that fishing communities with higher industrial diversification (i.e., 3rd (50-
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75%) and 4th quantiles (75-100%)) tend to cluster near zero growth (i.e., close to one as return) but with lower

instability. This indicates that communities with greater industrial diversification may, on average, experience

a steady-state employment growth status. Conversely, communities with low industrial diversification,

particularly those in the first and second industrial diversity quantiles, exhibit greater dispersion in the

growth-instability space.

4 A hyperbolic distance function approach

We adopt the hyperbolic distance production function (HDF) approach, commonly used in production

economics. In this framework, economic growth is treated as a desirable output, while economic risk is

considered an undesirable output in the growth process of communities. Here, 𝑥 represents a vector of 𝐾

inputs (𝑥 P R𝐾`), 𝑦 denotes a vector of 𝑉 desirable outputs (𝑦 P R𝑉`), and 𝑠 refers to a vector of𝑈 undesirable

outputs (𝑠 P R𝑈`), produced as byproducts of 𝑦. The production technology is defined by the production

possibility set:

𝑇 “ tp𝑥, 𝑦, 𝑠q : 𝑥 P R𝐾` , 𝑦 P R𝑉`, 𝑠 P R𝑈`, 𝑥 can produce (𝑦, 𝑠)u. (4)

The production technology is also characterized by a distance function, which provides insights into

production dynamics by analyzing three key relationships: (1) the shape of the production frontier, including

the curvature between outputs (𝑦´ 𝑦1 for desirable outputs and 𝑦´ 𝑠 for desirable and undesirable outputs);

(2) the relationship between inputs and outputs (𝑦 ´ 𝑥), analogous to a production function; and (3) the

complementarity or substitutability between inputs (𝑥 ´ 𝑥1), such as the marginal rate of technological

substitution (MRTS) along the isoquant (Morrison-Paul et al., 2000; Cuesta et al., 2009; Dalheimer et al.,

2024). This approach offers a comprehensive framework for studying growth and stability dynamics in

fishing communities, considering diversification and other community-specific factors.

The traditional output distance function measures the maximum feasible expansion of only desirable

outputs (𝑦) required to reach the boundary of the production possibility set (𝑇). It evaluates the efficiency of

a production bundle relative to the production frontier, defined as:

𝐷𝑂p𝑥, 𝑦, 𝑠q “ inf𝜃t𝜃 ą 0 : p𝑥,
𝑦

𝜃
, 𝑠q P 𝑇u. (5)

When 𝐷𝑂 “ 1, the production bundle is efficient and lies on the frontier. Conversely, 𝐷𝑂 ă 1 indicates
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Figure 3: Conceptualized hyperbolic distance function characterizes the production possibility frontier be-
tween economic outputs and specialization (inverse diversification). Red dots (like Community A) represent
communities that lie on the frontier—indicating fully efficient economic growth (appropriate growth and
instability) at a given specialization level—while black dots (like Community B) indicate communities with
room for further improvement with either more growth or less instability at given specialization.

inefficiency, suggesting that expanding desirable outputs (𝑦) can bring the production bundle closer to the

frontier. However, this function does not differentiate between desirable and undesirable outputs, limiting

its capacity to address trade-offs between these two types of outputs effectively.

To overcome this limitation, the hyperbolic distance function (HDF) is introduced. The HDF allows

for simultaneous adjustment of desirable and undesirable outputs, enabling a more nuanced measurement

of production efficiency. By capturing both economic growth and instability as desirable and undesirable

outputs, respectively, in our context, the HDF provides a comprehensive framework for evaluating the

economic growth process in fishing communities. The HDF is defined as:

𝐷𝐻p𝑥, 𝑦, 𝑠q “ inf𝜃t𝜃 ą 0 : p𝑥,
𝑦

𝜃
, 𝜃𝑠q P 𝑇u, (6)

where the HDF takes values between 0 and 1 (i.e., 𝐷𝐻 P r0, 1s). This function satisfies the following proper-

ties: (1) non-decreasing in desirable outputs, 𝐷𝐻p𝑥, 𝜅𝑦, 𝑠q ď 𝐷𝐻p𝑥, 𝑦, 𝑠q for 𝜅 P r0, 1s; (2) non-increasing

in undesirable outputs, 𝐷𝐻p𝑥, 𝑦, 𝜅𝑠q ď 𝐷𝐻p𝑥, 𝑦, 𝑠q for 𝜅 ě 1; (3) non-increasing in inputs, 𝐷𝐻p𝜅𝑥, 𝑦, 𝑠q ď
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𝐷𝐻p𝑥, 𝑦, 𝑠q for 𝜅 ě 1; and (4) almost homogeneity conditions, 𝐷𝐻p𝑥, 𝜅𝑦, 𝜅´1𝑠q “ 𝜅𝐷𝐻p𝑥, 𝑦, 𝑠q (Cuesta

et al., 2009). Using a flexible translog function, the HDF for the economic production process of community

𝑐 can be specified as:

ln𝐷𝐻𝑐 p𝑥, 𝑦, 𝑠q “ 𝛼0 `

𝐾
ÿ

𝑘“1
𝛼𝑘 ln 𝑥𝑘,𝑐 `

1
2

𝐾
ÿ

𝑘“1

𝐾
ÿ

𝑙“1
𝛼𝑘𝑙 ln 𝑥𝑘,𝑐 ln 𝑥𝑙,𝑐 `

𝑉
ÿ

𝑣“1
𝛽𝑣 ln 𝑦𝑣,𝑐 `

1
2

𝑉
ÿ

𝑣“1

𝑉
ÿ

𝑙“1
𝛽𝑣𝑙 ln 𝑦𝑣,𝑐 ln 𝑦𝑙,𝑐

`

𝑈
ÿ

𝑢“1
𝛿𝑢 ln 𝑠𝑢,𝑐 `

1
2

𝑈
ÿ

𝑢“1

𝑈
ÿ

𝑙“1
𝛿𝑢𝑙 ln 𝑠𝑢,𝑐 ln 𝑠𝑙,𝑐 `

𝐾
ÿ

𝑘“1

𝑉
ÿ

𝑣“1
𝛾𝑘𝑣 ln 𝑥𝑘,𝑐 ln 𝑦𝑣,𝑐 `

𝐾
ÿ

𝑘“1

𝑈
ÿ

𝑢“1
𝜂𝑘𝑢 ln 𝑥𝑘,𝑐 ln 𝑠𝑢,𝑐

`

𝑉
ÿ

𝑣“1

𝑈
ÿ

𝑢“1
𝜃𝑣𝑢 ln 𝑦𝑣,𝑐 ln 𝑠𝑢,𝑐,

(7)

Suppose a function𝐹 satisfies almost homogeneity of degree p𝑘1, 𝑘2, 𝑘3, 𝑘4q, then𝐹 satisfies the following

condition:

𝑘1

𝐾
ÿ

𝑘“1

B𝐹

B𝑥𝑘
` 𝑘2

𝑉
ÿ

𝑣“1

B𝐹

B𝑦𝑣
` 𝑘3

𝑈
ÿ

𝑢“1

B𝐹

B𝑠𝑢
“ 𝑘4𝐹 (8)

Since the hyperbolic distance function must satisfy almost homogeneity of degree p0, 1,´1, 1q, and using

the partial derivatives derived in Equation (7), the following condition should be satisfied for the HDF:

𝑉
ÿ

𝑣“1

B ln𝐷𝐻

B ln 𝑦𝑣
´

𝑈
ÿ

𝑢“1

B ln𝐷𝐻

B ln 𝑠𝑢
“ 1. (9)

To impose the homogeneity condition, we normalize the HDF by imposing the almost homogeneity

condition, 𝐷𝐻p𝑥, 𝜅𝑦, 𝜅´1𝑠q “ 𝜅𝐷𝐻p𝑥, 𝑦, 𝑠q. Suppose 𝜅 “ 1
𝑦1

, with 𝑦1 being the first desirable output in the

output vector 𝑦. The hyperbolic distance function then satisfies the following equation:

𝐷𝐻p𝑥,
𝑦

𝑦1
, 𝑠 ¨ 𝑦1q “

𝐷𝐻p𝑥, 𝑦, 𝑠q

𝑦1
, (10)

By taking the natural log on both sides,

ln𝐷𝐻𝑐 p𝑥, 𝑦˚, 𝑠˚q “ ln𝐷𝐻𝑐 p𝑥, 𝑦, 𝑠q ´ ln 𝑦1, (11)

where 𝑦˚ “ 𝑦{𝑦1 and 𝑠˚ “ 𝑠 ¨ 𝑦1. These values are plugged into Equation (7) to replace 𝑦 and 𝑠. Thus,

let ln𝐷𝐻𝑐 p𝑥, 𝑦˚, 𝑠˚q “ 𝑇𝐿p𝑥, 𝑦˚, 𝑠˚q, where 𝑇𝐿p¨q is the translog hyperbolic distance function defined in
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Equation (7). Furthermore, ln𝐷𝐻𝑐 is a one-sided community inefficiency component for each community

𝑐 in economic production, rearranged as ln𝐷𝐻𝑐 “ ´𝑢𝑐 (Brümmer et al., 2002; Cuesta and Zofı́o, 2005;

Cuesta et al., 2009). By rearranging the above equation with additional noise from estimation, we derive the

estimation equation as follows:

´ ln 𝑦1 “ 𝑇𝐿p𝑥, 𝑦˚, 𝑠˚q ` 𝑣𝑐 ` 𝑢𝑐, (12)

where 𝑣𝑐 is estimation noise that is normally distributed around zero, capturing all unobserved factors

beyond the control of each fishing community in the economic production process. 𝑢𝑐 represents the

distance between the observed output vector and the boundary of the production possibility set. We assume

𝑢𝑐 to be half-normally distributed around zero, as is common in the literature with this approach (Cuesta and

Zofı́o, 2005; Cuesta et al., 2009; Zhang and Ye, 2015). Additionally, we allow 𝑢𝑐 to be heteroskedastic as a

function of community-specific characteristics (but not direct growth-relevant inputs), following Dalheimer

et al. (2024) and Peña et al. (2018). To avoid the bias associated with the traditional two-step estimation

process, where the frontier and inefficiency equations are estimated separately, we opt for the simultaneous

estimation of the efficient frontier and inefficiency equations using maximum likelihood estimation (MLE),

as outlined by Belotti et al. (2013) (Kluge, 2018; Wang and Schmidt, 2002; Belotti et al., 2013).

Post-estimation, following the procedure of Reimer et al. (2017) and Cuesta et al. (2009), with the

estimated parameters and technical efficiency, we are able to compute the marginal rate of transformation

(MRT) between undesirable and desirable outputs from the production, which represents the opportunity

cost of reducing bad output concerning the forgone good output. The MRT is computed as a ratio of the first

derivatives of the HDF with respect to desirable output 𝑦 (here, employment growth) and undesirable output

𝑠 (here, growth instability) as follows:

𝑀𝑅𝑇𝑠,𝑦 “
B𝑠

B𝑦
“ ´

B𝐷𝐻{B𝑦

B𝐷𝐻{B𝑠
“ ´

𝜀𝐷,𝑦

𝜀𝐷,𝑠
¨
𝑠

𝑦
, (13)

where 𝜀𝐷,𝑦 and 𝜀𝐷,𝑠 are distance function elasticities for 𝑦 and 𝑠, estimated by differentiating the translog

distance function.

The MRT can be challenging to interpret directly, as it depends on the specific output ratio. To clarify

the trade-off in relative terms, independent of absolute output scales, Morrison-Paul et al. (2000) and Cuesta

et al. (2009) suggest normalizing the MRT by the output ratio, 𝑠{𝑦. Following this approach, we compute the
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normalized MRT (NMRT), which provides insights into the relative economic growth-risk relationship in

Alaskan fishing communities, independent of output scale. The NMRT is expressed as NMRT𝑠,𝑦 “ ´
𝜀𝐷,𝑦

𝜀𝐷,𝑠
,

where the distance elasticity for the desirable output 𝑦, 𝜀𝐷,𝑦 , is recovered using the homogeneity condition

in the HDF context, 𝜀𝐷,𝑦 “ 1 ` 𝜀𝐷,𝑠.

Similarly, we derive the marginal product (𝑀𝑃) of an input 𝑥𝑘 for the desirable output 𝑦 using the

distance function:

𝑀𝑃𝑦,𝑥𝑘 “
B𝑦

B𝑥𝑘
“ ´

B𝐷𝐻{B𝑥𝑘

B𝐷𝐻{B𝑦
“ ´

𝜀𝐷,𝑥𝑘

𝜀𝐷,𝑦
¨
𝑦

𝑥𝑘
. (14)

where 𝜀𝐷,𝑥𝑘 is a distance function elasticity of an input 𝑥𝑘 . As with the NMRT, the marginal product is

computed with normalization by the output-input ratio and evaluated at means. This normalized marginal

product (𝑁𝑀𝑃) provides a straightforward interpretation of the relative contribution of input to output,

independent of absolute scale. The 𝑁𝑀𝑃 of input 𝑥 on output 𝑦 is expressed as 𝑁𝑀𝑃𝑦,𝑥𝑘 “ ´
𝜀𝐷,𝑥𝑘

𝜀𝐷,𝑦
.

We consider one desirable output, average annual employment growth return (𝑦𝑐 “ expp𝛽1,𝑐q) and

one undesirable output, economic instability (𝑠𝑐), measured by the standard deviation of annual geometric

employment growth over the study period for each community 𝑐, derived from the regression equation (1).

The input vector includes: (1) population (𝑥1), representing labor input or human capital for community

growth (Himes-Cornell and Hoelting, 2015); (2) wage income per capita (𝑥2), serving as a proxy for economic

development or productivity, reflecting economic capital quality and welfare (Kluge, 2018); (3) an industrial

diversification measure (𝑥3); and (4) a fisheries diversification measure (𝑥4).3

To meet the HDF framework’s requirements and enable intuitive interpretation, however, we invert these

diversification measures into specialization measures (1{𝑥3 and 1{𝑥4). Unlike traditional inputs such as labor

and capital, diversification aims for stable, moderate growth with lower risk, aligning with portfolio theory.

This unconventional input-output relationship, characterized by lower returns and risks, can complicate

interpretation in the HDF context. Inverting diversification into specialization allows us to analyze how

specialization influences economic growth and stability while ensuring compliance with the HDF’s input

properties.

Fisheries-related variables, not directly tied to broader local economy growth—such as (1) the ratio

of fishing revenue to wage income (a measure of fishing dependency) and (2) fishing permit share within
3We limit the inclusion of variables to a maximum of four input variables that strongly relate to economic growth in fishing

communities, based on available community-level data in the HDF. This limitation arises from (1) the exponential increase in the
number of parameters with additional input variables in the translog specification with limited degrees of freedom in the data, and
(2) potential difficulties in likelihood function convergence as the number of estimated parameters increases.
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a shared economic zone (a fishing hotspot (or concentration) index at the borough level)—are included in

inefficiency terms.4 These variables enable heteroskedastic inefficiency, influencing distance function values

and promoting efficient economic growth in fishing communities. By reducing unnecessary instability and

fostering growth, they capture community-specific characteristics driving heterogeneous inefficiency.

To impose the homogeneity condition, we use the desirable output 𝑦𝑐 as the normalizing factor, following

Cuesta and Zofı́o (2005); Cuesta et al. (2009) and Reimer et al. (2017). The resulting normalized distance

function is expressed as:

´ ln 𝑦𝑐 “

´

𝛼0 `

4
ÿ

𝑘“1
𝛼𝑘 ln 𝑥𝑘,𝑐 `

1
2

4
ÿ

𝑘“1

4
ÿ

𝑙“1
𝛼𝑘𝑙 ln 𝑥𝑘,𝑐 ln 𝑥𝑙,𝑐 ` 𝛿1 ln 𝑠˚

𝑐 (15)

`
1
2
𝛿11 ln 𝑠˚

𝑐 ln 𝑠˚
𝑐 `

4
ÿ

𝑘“1
𝜂𝑘1 ln 𝑥𝑘,𝑐 ln 𝑠˚

𝑐

¯

`𝑣𝑐 ` 𝑢𝑐,

where 𝑠˚
𝑐 “ 𝑠𝑐 ¨ 𝑦𝑐. The hyperbolic distance function (HDF) in Equation (15) allows for efficient output

adjustments. Extending this, we additionally use the Enhanced Hyperbolic Distance Function (EHDF) used

by Cuesta and Zofı́o (2005); Cuesta et al. (2009); Dalheimer et al. (2024), which additionally adjusts inputs

for greater efficiency. The EHDF, denoted as 𝐷𝐸 , normalizes inputs by the desirable output, yielding:

´ ln 𝑦𝑐 “

´

𝛼0 `

4
ÿ

𝑘“1
𝛼𝑘 ln 𝑥˚

𝑘,𝑐 `
1
2

4
ÿ

𝑘“1

4
ÿ

𝑙“1
𝛼𝑘𝑙 ln 𝑥˚

𝑘,𝑐 ln 𝑥˚
𝑙,𝑐 ` 𝛿1 ln 𝑠˚

𝑐 (16)

`
1
2
𝛿11 ln 𝑠˚

𝑐 ln 𝑠˚
𝑐 `

4
ÿ

𝑘“1
𝜂𝑘1 ln 𝑥˚

𝑘,𝑐 ln 𝑠˚
𝑐

¯

`𝑣𝑐 ` 𝑢𝑐,

where 𝑥˚
𝑘,𝑐

“ 𝑥𝑘,𝑐 ¨ 𝑦𝑐.

Normalizing inputs and outputs by the homogeneity condition reduces potential simultaneity bias, as

outputs appear on both the left and right sides of the equation. This approach allows the use of output

ratios as exogenous values since they represent radial expansion while holding input levels constant (Coelli

and Perelman, 1996; Coelli, 2000; Cuesta and Orea, 2002). In the EHDF framework, desirable outputs are

affected directly by error terms, while inputs (and undesirable outputs) are inversely affected, permitting

exogenous treatment of desirable-undesirable output ratio and input-output products normalized by desirable

outputs (Cuesta and Zofı́o, 2005; Dalheimer et al., 2024). For convenient elasticity evaluation at the means
4We assume that these variables may directly influence the fishing sector’s productivity but not directly impact economic growth

and instability, except through their effects on the fishing sector. Therefore, we do not include them in the frontier equation.
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and improved convergence in maximum likelihood estimation (MLE), we normalize all variables by their

geometric mean, as recommended by Cuesta et al. (2009) and Reimer et al. (2017).

5 Results

We estimate the hyperbolic distance function (HDF) and the enhanced hyperbolic distance function (EHDF)

in Equations (15) and (16) using the four inputs defined above. We implement stochastic frontier analysis

(SFA) under three specifications that vary the inefficiency determinants: (1) no controls, (2) spatial fishing

permit share within the shared economic zone, and (3) the fishing revenue-to-wage income ratio to assess

how fishing dependence affects community efficiency.

Table 2 reports estimates for HDF (1)–(3) and EHDF p1˚q–p3˚q. Across all specifications, the inputs

are statistically significant in first- and/or second-order terms, supporting their inclusion. The signs and

significance of the coefficients on average population p𝛼1q, wage income per capita p𝛼2q, industrial spe-

cialization p𝛼3q, and fisheries specialization p𝛼4q are consistent with the HDF’s non-increasing property in

inputs; in practice, coefficients are significantly negative or not statistically different from zero. Per capita

wage income, a proxy for community-specific economic development and productivity, also affects economic

growth. Although its first-order effect is generally not significant, higher-order terms are significant in most

specifications, suggesting increasing returns to scale in development and productivity.

Economic instability, treated as an undesirable output, also conforms to the non-increasing property: esti-

mates for 𝛿1 are negative and statistically significant. This pattern is consistent with the high-risk, high-return

implication of modern portfolio theory (MPT). We further corroborate this trade-off by testing the output-

ratio normalized marginal rate of transformation, 𝑁𝑀𝑅𝑇𝑠,𝑦 , evaluated at sample means (Equation (13));

results appear in Table 3.
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Table 2: Estimation results: (enhanced) hyperbolic distance function

(1) (2) (3) (1*) (2*) (3*)

HDF EHDF

Population (𝛼1) -0.018*** -0.018*** -0.019*** -0.018*** -0.018*** -0.019***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Wage/Capita Inc. (𝛼2) 0.002 0.001 -0.000 0.001 0.000 -0.001
(0.004) (0.004) (0.004) (0.004) (0.004) (0.004)

Ind. Specialization (𝛼3) -0.014* -0.015* -0.018** -0.012 -0.013* -0.016**
(0.008) (0.008) (0.008) (0.008) (0.008) (0.008)

Fish. Specialization (𝛼4) -0.007*** -0.007*** -0.007*** -0.006*** -0.006*** -0.006***
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Population sq. (𝛼11) 0.008*** 0.008*** 0.009*** 0.008*** 0.008*** 0.008***
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Wage/Capita Inc. sq. (𝛼22) -0.021 -0.023* -0.027** -0.020 -0.022 -0.026*
(0.046) (0.014) (0.014) (0.014) (0.014) (0.013)

Ind. Specialization sq. (𝛼33) -0.001 0.001 -0.005 -0.018 -0.016 -0.021
(0.045) (0.045) (0.045) (0.044) (0.044) (0.044)

Fish. Specialization sq. (𝛼44) 0.009** 0.009* 0.010** 0.010** 0.009** 0.010**
(0.004) (0.004) (0.004) (0.005) (0.005) (0.005)

Population * Wage/Capita Inc. (𝛼12) -0.007 -0.006 -0.007 -0.005 -0.004 -0.005
(0.005) (0.004) (0.005) (0.004) (0.004) (0.004)

Population * Ind. Special. (𝛼13) 0.005 0.005 0.001 0.002 0.002 -0.002
(0.008) (0.009) (0.009) (0.008) (0.008) (0.009)

Population * Fish. Special. (𝛼14) 0.008*** 0.008*** 0.008*** 0.007*** 0.007*** 0.008***
(0.002) (0.002) (0.002) (0.003) (0.003) (0.003)

Wage/Capita Inc. * Ind. Special. (𝛼23) -0.016 -0.020 -0.027 -0.024 -0.025 -0.030
(0.018) (0.018) (0.018) (0.018) (0.018) (0.018)

Wage/Capita Inc. * Fish. Special. (𝛼24) -0.003 -0.003 -0.004 -0.001 -0.001 -0.002
(0.054) (0.055) (0.054) (0.054) (0.054) (0.053)

Ind. Special. * Fish. Special. (𝛼34) 0.015 0.015 0.014 0.016* 0.016* 0.014
(0.010) (0.010) (0.009) (0.010) (0.010) (0.010)

Econ. Instability (𝛿1) -0.302*** -0.296*** -0.298*** -0.321*** -0.314*** -0.317***
(0.053) (0.041) (0.039) (0.040) (0.039) (0.039)

Econ. Instability sq. (𝛿11) 0.281 0.435 0.369 0.617 0.743 0.664
(0.912) (0.929) (0.942) (0.860) (0.875) (0.886)

Population * Econ. Instability (𝜂11) -0.011 -0.016 -0.016 0.007 0.011 0.007
(0.042) (0.041) (0.041) (0.040) (0.040) (0.040)

Wage/Capita Inc. * Econ. Instability (𝜂21) -0.416*** -0.397*** -0.425*** -0.349*** -0.335*** -0.364***
(0.115) (0.116) (0.114) (0.114) (0.113) (0.112)

Ind. Special. * Econ. Instability (𝜂31) -0.073 -0.091 -0.128 -0.014 -0.022 -0.059
(0.167) (0.167) (0.167) (0.163) (0.164) (0.163)

Fish. Special * Econ. Instability (𝜂41) -0.063 -0.054 -0.061 -0.036 -0.025 -0.028
(0.050) (0.051) (0.051) (0.050) (0.050) (0.050)

Inefficiency
Broader Permit Share -0.720 -1.005 -0.717 -1.024*

(0.734) (0.645) (0.703) (0.618)
Fishing Earnings to Wage Income Ratio 0.051** 0.052**

(0.025) (0.023)

Observations 177 177 177 177 177 177

Standard errors in parentheses. ˚˚˚𝑝 ă 0.01, ˚˚𝑝 ă 0.05, ˚𝑝 ă 0.10.
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Our main variables of interest—industrial specialization (1{𝑥3) and fisheries specialization (1{𝑥4) (as

inverse diversification)—demonstrate their relevance to economic growth. Notably, fisheries specialization

shows its potential role in influencing the economic growth of local economies in fishing communities beyond

the fishing sector. To further clarify how these specialization measures affect community economic growth

and growth instability, we tested the marginal product using Equation (14), based on the estimated distance

function elasticities of specialization measures, economic instability, and economic growth via the implicit

function theorem.

Table 3: Test results for the normalized 𝑀𝑅𝑇𝑠,𝑦

(1) (2) (3) (1*) (2*) (3*)
𝑁𝑀𝑅𝑇𝑠,𝑦 2.315*** 2.381*** 2.350*** 2.009*** 2.064*** 2.018***

(0.442) (0.457) (0.442) (0.379) (0.392) (0.376)
Standard errors in parentheses. ˚˚˚𝑝 ă 0.01, ˚˚𝑝 ă 0.05, ˚𝑝 ă 0.10.

For computing the marginal product on employment growth, the distance function elasticity of economic

growth (𝜖𝐷,𝑦) was recovered using the homogeneity condition in Equation (10). Table 4 below presents the

test results of the computed marginal product of industrial specialization on the employment growth of fishing

communities. The overall positive and statistically significant marginal product confirms this relationship

between specialization and growth. From the perspective of industrial diversification, this finding suggests

that diversification may reduce economic returns. Overall, the statistical significance of the marginal product

of industrial specialization on economic growth demonstrates that specialization drives higher economic

growth in fishing communities.

Table 4: Test results for the normalized 𝑀𝑃𝑦,𝑥3

(1) (2) (3) (1*) (2*) (3*)
𝑁𝑀𝑃𝑦,𝑥3 0.020* 0.021* 0.025** 0.020 0.021 0.026*

(0.011) (0.011) (0.012) (0.013) (0.013) (0.013)
Standard errors in parentheses. ˚˚˚𝑝 ă 0.01, ˚˚𝑝 ă 0.05, ˚𝑝 ă 0.10.

As shown in Table 5, results for fisheries specialization are similar and, in many cases, exhibit higher

statistical significance. The computed marginal product of fisheries specialization, 𝑀𝑃𝑦,𝑥4 , is strongly

significant across all specifications, with a magnitude generally 2–2.5 times lower than that of industrial

specialization. Although its effect is smaller than that of industrial specialization, the same interpretation

applies: fisheries specialization contributes to higher economic growth in fishing communities beyond the

fishing sector. Overall, these findings indicate that specialization—whether in the broader economy or the
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fishing sector—yields higher economic returns in the local economies of Alaskan fishing communities.

Equivalently, diversification (the inverse of specialization) in either fisheries or the local economy reduces

economic growth.

Table 5: Test results for the normalized 𝑀𝑃𝑦,𝑥4

(1) (2) (3) (1*) (2*) (3*)
𝑁𝑀𝑃𝑦,𝑥4 0.010*** 0.010*** 0.010*** 0.009*** 0.009*** 0.010***

(0.003) (0.002) (0.003) (0.003) (0.003) (0.003)
Standard errors in parentheses. ˚˚˚𝑝 ă 0.01, ˚˚𝑝 ă 0.05, ˚𝑝 ă 0.10.

We also test the marginal products of industrial and fisheries specialization with respect to the undesirable

output, economic instability. These marginal products, 𝑀𝑃𝑠,𝑥3 “ B𝑠
B𝑥3

and 𝑀𝑃𝑠,𝑥4 “ B𝑠
B𝑥4

, are obtained via

the chain rule as the product of the output trade-off and the effect of specialization on growth:

𝑀𝑃𝑠,𝑥𝑘 “
B𝑠

B𝑦
¨

B𝑦

B𝑥𝑘
“ 𝑀𝑅𝑇𝑠,𝑦 ¨ 𝑀𝑃𝑦,𝑥𝑘 , 𝑘 P t3, 4u,

because a change in an input first affects the desirable output 𝑦 (through 𝑀𝑃𝑦,𝑥𝑘 ), which in turn affects the

undesirable output 𝑠 (through 𝑀𝑅𝑇𝑠,𝑦).

Table 6: Test results for normalized 𝑀𝑃𝑠,𝑥3

(1) (2) (3) (1*) (2*) (3*)
𝑁𝑀𝑃𝑠,𝑥3 0.049* 0.051* 0.059** 0.038 0.043* 0.052**

(0.027) (0.028) (0.028) (0.026) (0.026) (0.026)
Standard errors in parentheses. ˚˚˚𝑝 ă 0.01, ˚˚𝑝 ă 0.05, ˚𝑝 ă 0.10.

The test results for 𝑀𝑃𝑠,𝑥3—the marginal product of industrial specialization on economic instabil-

ity—generally show a statistically significant positive relationship. Thus, while more industrially specialized

fishing communities in Alaska benefit from higher economic growth, they must also contend with greater

instability. Interpreting specialization inversely as diversification, communities with more diversified local

economies experience greater stability, albeit with a moderate reduction in growth. We also test the marginal

product of fisheries specialization; results in Table 7 are consistent with those for industrial specialization.

In sum, both types of specialization (and, inversely, diversification)—in fisheries and in the broader

industrial structure—affect local economic performance: specialization raises growth but is associated with

higher instability, whereas diversification improves stability at the cost of some growth. The magnitude of

these effects is larger for industrial structure than for fisheries, which is expected given the direct relevance of
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Table 7: Test results for normalized 𝑀𝑃𝑠,𝑥4

(1) (2) (3) (1*) (2*) (3*)
𝑁𝑀𝑃𝑠,𝑥4 0.024*** 0.023*** 0.024*** 0.019*** 0.018*** 0.019**

(0.007) (0.007) (0.007) (0.006) (0.006) (0.006)
Standard errors in parentheses. ˚˚˚𝑝 ă 0.01, ˚˚𝑝 ă 0.05, ˚𝑝 ă 0.10.

industrial composition to the local economy, while fisheries diversification primarily influences the fishing

sector with second-order effects on the broader economy.

The interaction-term coefficients between inputs, 𝛼𝑘𝑙, capture complementary and substitution relation-

ships in the production process (Morrison-Paul et al., 2000; Cuesta et al., 2009). Following Morrison-Paul

et al. (2000)5, a positive coefficient 𝛼𝑘𝑙 ą 0 indicates substitution, where the marginal product of input 𝑘

decreases as input 𝑙 increases (by symmetry, 𝛼𝑘𝑙 “ 𝛼𝑙𝑘). Conversely, a negative coefficient 𝛼𝑘𝑙 ă 0 indicates

complementarity, where the marginal product of input 𝑘 increases with input 𝑙.

A key result is the significance of the interaction between fisheries and industrial specialization. Estimates

for 𝛼34 indicate substitution between these inputs: statistically significant in the EHDF and marginally

significant in the HDF (𝑝 ă 0.13 for HDF (1)–(3)). This suggests that fisheries and industrial specialization

can substitute for each other, with implications for economic development in Alaskan fishing communities.

If physical or economic constraints limit specialization in the local economy, communities may instead

specialize in fisheries to achieve growth. Conversely, if fisheries specialization is constrained by ecological or

market factors, communities may specialize within a particular industrial sector. Thus, when specialization

in one domain is constrained by geography or resource availability, communities may compensate by

specializing in the other.

From the diversification perspective (the inverse of specialization), this implies complementarity between

specialization and diversification across fisheries and the local fishing economy. Specializing in one domain

while diversifying the other can support sustainable growth with greater stability. Balancing specialization

and diversification across industrial sectors and fisheries creates a complementary dynamic that fosters

stability without sacrificing growth.6

5Unlike most of the distance-function literature, which uses a negative sign on the left-hand side for normalization, Morrison-
Paul et al. (2000) use a positive sign to simplify interpretation of production relationships. By flipping the sign of our estimated
coefficients, we provide an interpretation consistent with Morrison-Paul et al. (2000). Similarly, Cuesta et al. (2009) use a negative
sign but provide the same interpretation.

6As a robustness check, we re-estimate this complementary relationship using a direct diversification measure and assess which
direction of complementarity is clearer (i.e., industrial diversification & fisheries specialization vs. industrial specialization &
fisheries diversification).
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In the SFA inefficiency equations that allow for heteroskedastic inefficiency with respect to fisheries-

related community factors, the fisheries-permit share (a fisheries concentration index) shows a negative sign

consistently, which aligns with challenges faced by small fishing communities with limited access to fishing-

support services (Lavoie and Himes-Cornell, 2019). Survey and network evidence indicate that remote

Alaskan fishing communities rely heavily on larger hub communities (e.g., Anchorage, Homer, Wrangell,

Fairbanks, Ketchikan, Sitka, Kodiak) for infrastructure and services; this reliance is associated with higher

fishing costs and reduced adaptive capacity to climate-related shocks.

Lastly, the fishing-dependency variable is positively associated with inefficiency, indicating that higher

dependence on fishing coincides with greater distance from the production frontier. This association is

consistent with lower economic growth and greater instability, underscoring that heavy reliance on natural

resources may hinder efficient growth in fishing communities.

5.1 Robustness check 1: Testing endogeneity of input variables

Our objective is to develop a comprehensive understanding of how industrial and fisheries diversification

shape growth and stability in local fishing economies, and how they interact with other growth factors

in Alaska’s fishing communities, rather than to identify variable-specific causal effects. Nevertheless,

endogeneity remains a concern that could complicate interpretation.

We have argued that our HDF estimates are relatively robust to endogeneity, particularly simultaneity.

Even so, unobserved community characteristics may influence input variables and economic instability, and

the limited literature on community growth determinants, together with scarce community-level data, leaves

residual uncertainty.

Empirical studies often mitigate endogeneity by incorporating additional data (e.g., input prices) or by

using instrumental variables (IV) within SFA (Dalheimer et al., 2024; Sauer and Latacz-Lohmann, 2015;

Atkinson et al., 2003). Applying IV methods in SFA is challenging: valid community-level instruments

are difficult to find; even with valid instruments, our setting faces (1) a modest cross-sectional sample

(few communities), (2) substantial consumption of degrees of freedom due to numerous parameters, and

(3) potential weak-instrument problems, particularly in the translog HDF. As Amsler et al. (2016) note,

addressing endogeneity in a translog specification with multiple endogenous variables requires instruments

for nonlinearly transformed terms (squares and interactions), which may be weak; in such cases, two-stage

estimators (e.g., 2SLS) can be statistically inefficient.
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A potential alternative is the True Fixed-Effects (TFE) model in SFA (Greene, 2005a,b), which can

address omitted time-invariant community factors. However, TFE estimation suffers from the incidental-

parameter problem in panels with many communities (𝑁 large) and a fixed, finite time dimension (𝑇 small).

As a robustness check, we therefore test for potential endogeneity using the Bayesian Mundlak–

Chamberlain device (MCD), which models unobserved heterogeneity and helps validate our results. Fol-

lowing Dalheimer et al. (2024), who apply an HDF framework with comparable inputs, desirable outputs,

and undesirable outputs, we implement the Bayesian MCD. The device originates with Mundlak (1978) and

Chamberlain (1982) and is extended to a Bayesian framework by Griffiths and Hajargasht (2016); it is well

suited to SFA contexts.

The Mundlak–Chamberlain device (MCD) addresses endogeneity in panel models by modeling the

correlation between unit effects and observed regressors. Like fixed effects, it mitigates bias from omitted

variables correlated with both the dependent variable and the inputs. Relative to fixed effects, MCD estimation

(1) preserves between variation, improving efficiency; (2) flexibly accommodates nonlinear models while

capturing unobserved heterogeneity; and (3) avoids the incidental-parameter problem because it does not

estimate unit-specific intercepts (Wooldridge, 2010).

Building on this idea, Griffiths and Hajargasht (2016) propose a Bayesian test for input endogeneity in

SFA, subsequently applied by Dalheimer et al. (2024). The model is:

ln 𝑦𝑖𝑡 “ ln 𝑓 p𝑋𝑖𝑡 , 𝑠𝑖𝑡 ; 𝛽q ´ 𝑢𝑖 ` 𝜈𝑖𝑡 , (17)

𝐻p𝑢𝑖q “ 𝑥𝑖
1𝛿 ` 𝜁𝑖𝑡 , (18)

where 𝐻p𝑢𝑖q “ lnp𝑢𝑖q and 𝑓 p¨q is a Cobb–Douglas distance function.7 The inefficiency specification 𝐻p¨q

includes time-averaged values 𝑥𝑖 of industrial p𝑥3q and fisheries specialization p𝑥4q to test for endogeneity.

Unlike frequentist confidence intervals, Bayesian credible intervals admit a direct probabilistic interpretation

of parameter uncertainty given the data and priors.

Statistically significant posterior means in the inefficiency equation within a given credible interval (e.g.,

95%) indicate potential endogeneity (Griffiths and Hajargasht, 2016; Dalheimer et al., 2024). Conversely,

insignificance—evidenced by a large posterior standard deviation relative to the mean—implies weak evi-
7Following Griffiths and Hajargasht (2016) and Dalheimer et al. (2024), we adopt Cobb–Douglas for computational efficiency

in sampling and convergence.
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dence of endogeneity. In Bayesian terms, the credible interval for the correlation parameters 𝛿 quantifies this

uncertainty; wide intervals centered near zero suggest weak correlation.

We adopt the priors in Griffiths and Hajargasht (2016) for the frontier parameters 𝛽 and the inefficiency

parameters 𝛿. To form the panel, we split the study period into two blocks, 2000–2008 and 2009–2016,

yielding a structure that balances long-run trends and data availability. After excluding communities with

insufficient time observations, the sample comprises 𝑁 “ 165 communities observed over 𝑇 “ 2 periods

(𝑁𝑇 “ 330). Table 8 reports the Bayesian MCD estimates.

Table 8: Results from Bayesian Mundlak–Chamberlain device estimation.

ln 𝑦1 Posterior Mean Posterior SD

Frontier
Const. 0.233 0.208
ln 𝑥1 (Population) 2.770** 0.642
ln 𝑥2 (Wage Income per Capita) 0.413 0.457
ln 𝑥3 (Ind. Specialization) 1.707** 0.647
ln 𝑥4 (Fish. Specialization) -0.759 0.430
ln 𝑠1 (Instability) 15.790** 6.829

Inefficiency
Const. -1.821** 0.918
ln 𝑥3 0.008 1.409
ln 𝑥4 0.006 1.422

Sample Observations 330
** Significant at the 95% credible interval level.

We find no strong evidence of endogeneity for industrial or fisheries specialization, suggesting that

endogeneity is not a major concern in our HDF model. The Bayesian estimates closely align with the

HDF results: population (𝑥1) and industrial specialization (𝑥3) have positive effects on economic growth,

while wage per capita (𝑥2) is insignificant. Fisheries specialization (𝑥4) is not significant, which may reflect

the short panel length or specification differences (e.g., inclusion of quadratic terms). Instability shows a

significant positive association with employment growth, reinforcing the link between higher growth and

greater instability. Overall, the Bayesian MCD results support our main findings.
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5.2 Robustness check 2: Estimation with direct diversification measures

In our main estimation, we invert industrial and fisheries diversification to interpret specialization and

to maintain the non-increasing property of inputs, consistent with conventional input–output relationships

in the HDF framework. To confirm robustness, we also estimate the model using direct diversification

measures. This provides direct evidence of the complementary relationship between fisheries diversification

(or specialization) and economic specialization (or diversification), rather than relying solely on indirect

inference from specialization in the main analysis. Switching from fisheries specialization to its direct

diversification counterpart yields coefficients with the same significance but opposite signs.

Complete results appear in Table C1 in Appendix C, which reports HDF estimates using the direct

diversification measure (fisheries diversification, the inverse of specialization). The results align with

our primary findings: the signs and significance of fisheries diversification and its interaction terms are

consistent, with coefficients of similar magnitude but opposite signs. In addition, the interaction between

fisheries diversification and economic specialization reaffirms the complementary relationship between

diversification and specialization.

5.3 Robustness check 3: Estimation with alternative diversification measures using the

Herfindahl–Hirschman index

We examine the sensitivity of our results to alternative diversification measures. In place of our de-

fault measure (based on the Shannon diversity index), we construct an alternative index using the inverse

Herfindahl–Hirschman Index (HHI), also known as the Simpson diversity index, following Kluge (2018).

Like the Shannon index, this measure is lower-bounded by 1. We define the inverse-HHI diversification

index, 𝐷𝑖𝑣𝐻𝐻𝐼𝑐 , using sector shares 𝑃𝑖𝑐𝑡 (as in Equation (2)) as:

𝐷𝑖𝑣𝐻𝐻𝐼𝑐 “
1
𝑇

𝑇
ÿ

𝑡“1

˜

1
ř𝑁
𝑖“1 𝑃

2
𝑖𝑐𝑡

¸

. (19)

Table D1 in Appendix D reports estimates using this alternative index (converted to a specialization

measure for estimation). Results are qualitatively consistent with the baseline that uses the Shannon index,

differing only slightly in magnitude because the two measures are on different scales.8

8A simple correlation analysis shows strong agreement between the two indices: the correlation coefficient is 0.97 for both
industrial and fisheries diversification. These findings confirm that our main results are robust to the choice of diversification
measure.
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6 Discussion

The growth and stability of Alaska’s local fishing economies are critical for sustaining fishing communities

and fishers’ livelihoods as climate-induced changes reshape ocean and coastal systems. Prior research on

fisheries diversification has largely focused on stabilizing revenue within the fishing sector, often extrapolating

broader community effects without direct empirical evidence. We address this gap by providing empirical

evidence that fisheries diversification—alongside industrial diversification within the local economy—shapes

the growth and stability of local fishing economies. In particular, both fisheries and industrial diversification

are associated with greater stability in the local economies of fishing communities.

Our research provides the first empirical evidence that industrial and fisheries diversification are inter-

linked with each other and with broader community growth factors in shaping local economic growth. We

find potential synergistic effects, where fisheries specialization and industrial diversification reinforce one

another. Figure 4 shows the marginal product of each specialization across varying diversification levels in

the complementary sector.

Figure 4a shows that the marginal product of industrial specialization increases monotonically with little

evidence of diminishing returns. Greater fisheries diversification shifts this curve upward, indicating synergy;

however, statistical precision is weaker for the industrial specialization estimates, as reflected in wide 95%

confidence intervals. For fisheries specialization (Figure 4b), the marginal product exhibits diminishing

returns: at very high levels of specialization, additional specialization can reduce local economic growth.

As with industrial specialization, greater industrial diversification raises the marginal product curve and

moderates the rate of diminishing returns. Moreover, the synergistic direction is statistically clearer for

fisheries specialization than the complementary effect associated with industrial specialization. Overall, our

results—supported by both estimations and visualizations—demonstrate that economic growth and stability

in local fishing economies, driven by industrial and fisheries diversification, exhibit heterogeneous responses

significantly influenced by the interaction with diversification levels in the complementary counterpart,

whether in fisheries or the industrial structure of communities.

Previous studies have focused on the stabilizing effects of diversification while overlooking its trade-off

with long-term growth. This narrow focus risks neglecting the vital role of economic growth in sustaining

local fishing economies. Our findings show that, on average, Alaskan fishing communities have experienced

a zero-growth steady state in employment, suggesting that achieving stability at the expense of growth
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(a) Industrial specialization on growth

(b) Fisheries specialization on growth

Figure 4: Marginal products of industrial and fisheries specialization with complementary effects. Dashed
lines denote 95% confidence intervals computed via the delta method (Appendix E). Estimates are based on
specification (3) in Table 2 and are evaluated at the sample means of the other covariates. We use the HDF
specification for interpretability because the EHDF case normalizes input 𝑥.

may undermine sustainability. Therefore, a balanced approach that fosters both economic stability and

growth—whether through fisheries diversification or a specialized industrial structure—is essential for long-

term viability.

Sethi et al. (2014) noted that geographical factors may constrain fisheries diversification, thus limiting its

potential to drive economic stability or growth in certain contexts. In line with this, our findings suggest that

economic stability can still be achieved through industrial structural improvements, provided that geographic
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constraints do not also restrict industrial reform. Communities can pursue industrial specialization for direct

growth or diversification to enhance growth—particularly in support of specialized fisheries through the

complementary effects shown in Figure 4. This dual-track strategy enables fishing communities to achieve

balanced economic growth and stability by adapting fisheries and industrial structures to their specific

community contexts, minimizing trade-offs between economic growth and stability.

Figure 4 further reveals that the complementary effects between fisheries specialization and industrial

diversification are more evident than those between industrial specialization and fisheries diversification.

While specializing in high-yield fisheries can drive revenue growth and generate spillover effects, it also

heightens vulnerability to market and ecological shocks. A diversified industrial base—including processing,

logistics, tourism, and trade—provides essential complementary services and alternative income sources

during fisheries downturns. Consequently, fisheries-specialized communities may need to enhance resilience

against a rapidly changing fishing environment by pursuing industrial diversification.

Overall, our research offers several key policy insights. First, fisheries policies alone are insufficient; they

must be integrated with broader industrial development strategies to sustain local fishing economies. Second,

place-based interventions that promote cross-sector investments and industrial diversification are essential

for balancing the trade-off between economic growth and stability. Finally, tailored workforce development

and community-specific strategies are crucial, as the optimal transformation of industrial structure depends

on local conditions. Collectively, these insights highlight the need for a comprehensive, locally attuned

policy framework to foster resilient and sustainable economic growth in Alaska’s fishing communities.
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fisheries: Least developed countries top global index of vulnerability. PLoS ONE, 12, 6 2017. ISSN

19326203. doi: 10.1371/journal.pone.0179632.

A. L. Bris, K. E. Mills, R. A. Wahle, Y. Chen, M. A. Alexander, A. J. Allyn, J. G. Schuetz, J. D. Scott,

and A. J. Pershing. Climate vulnerability and resilience in the most valuable North American fishery.

Proceedings of the National Academy of Sciences of the United States of America, 115:1831–1836, 2

2018. ISSN 10916490. doi: 10.1073/pnas.1711122115.
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Appendix

A Estimation procedure details in stochastic frontier analysis

Our SFA employs a simultaneous estimation of the efficient frontier and inefficiency equations using Max-

imum Likelihood Estimation (MLE), avoiding the biases of the traditional two-step approach. To ensure

reliable results, we address three critical factors: (i) the distributional assumption for the inefficiency term,

(ii) initial parameter selection, and (iii) the optimization algorithm. These steps are essential to prevent

convergence issues, avoid local maxima, and produce robust parameter estimates.

To determine initial values for maximizing the likelihood function, we followed the approach outlined by

Kumbhakar et al. (2015). Specifically, we began by performing Ordinary Least Squares (OLS) estimations

on both the frontier and inefficiency equations. The resulting coefficients were then used as initial values

for the subsequent SFA process. This method provides a robust foundation for the optimization process and

improves the reliability and precision of our estimations, particularly in cases where the default initial values

generated by STATA may not perform adequately.

After evaluating both half-normal and truncated-normal distributions and finding non-significant results

for the mean locus of the truncated-normal distribution, we opted for the half-normal distribution as proposed

by Aigner et al. (1977), which is generally employed in the HDF literature. This choice was made for

its simplicity and effectiveness in estimating the likelihood function, attributed to its single-parameter

characteristic, unlike the two-parameter (mean locus and standard deviation) structure of the truncated-

normal distribution.9

The selection of an optimization algorithm for the likelihood function significantly influences the stability

and convergence of the likelihood function. Within our estimation environment, specifically STATA, we

utilized four different optimization algorithms.10 After experimenting with these algorithms, we identified

those that exhibited stable convergence of the likelihood function, along with the highest likelihood value

upon stable convergence. This approach ensures that our choice of optimization algorithm not only promotes

efficient convergence but also optimizes the accuracy and reliability of our estimation results.
9Exponential and gamma distributions were also considered but the half-normal and truncated-normal distributions showed

superior convergence in our preliminary analysis, leading us to focus on these distributions.
10Newton-Raphson, Broyden–Fletcher–Goldfarb–Shanno (BFGS), Davidon–Fletcher–Powell (DFP), and

Berndt–Hall–Hall–Hausman (BHHH).
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B Measuring economic growth rate and economic instability

In our study, we utilized the geometric growth rate of employment as our measure for average growth. This

metric is often employed to present a more accurate long-term performance of a portfolio. It is based on the

principle that performance in one period affects subsequent periods. Conversely, the arithmetic average may

not accurately measure long-term growth when economic volatility is prevalent.

We adopt the methodologies utilized by Lande (1994), Chandra (2002), and Hafner (2019). To elucidate

this approach, we begin with a continuous-time exponential model for employment growth rate, which is

expressed as:

𝐸𝑚𝑝𝑡 “ 𝐸𝑚𝑝0 ¨ 𝑒𝛽1¨𝑡

Here, 𝐸𝑚𝑝0 represents the initial employment at time 𝑡 “ 0, and 𝛽1 is the instantaneous employment growth

rate. By logarithmically transforming both sides of the equation, we obtain:

logp𝐸𝑚𝑝𝑡q “ 𝛽0 ` 𝛽1 ¨ 𝑡

where 𝛽0 = logp𝐸𝑚𝑝0q, treated as a constant. This log-transformed equation, after including an error term

𝜖𝑡 , is estimated using Ordinary Least Squares (OLS) as follows:

logp𝐸𝑚𝑝𝑡q “ 𝛽0 ` 𝛽1 ¨ 𝑡 ` 𝜖𝑡

With the estimated coefficient of the time trend, 𝛽1, interpreted as the average instantaneous growth rate

of employment, we difference the estimated equation from 𝑡 ´ 1 to 𝑡:

logp𝐸𝑚𝑝𝑡q ´ logp𝐸𝑚𝑝𝑡´1q “ 𝛽1

By exponentiating the above equation and recognizing that the discrete-time version of exponential

growth corresponds to the geometric growth rate, we establish the following relationship:

p1 ` 𝜇q “ expp𝛽1q

where 𝜇 represents the average annual geometric growth rate of employment for a community. Since the
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HDF employs a log-transformation to ensure all values remain positive, we use the average annual geometric

growth return, 𝑦𝑐 “ expp𝛽1, 𝑐q, where the subscript 𝑐 denotes each community.

Subsequently, instability is quantified as the standard deviation of residuals from an OLS estimation

based on the previous log-time trend equation. The fitted regression line on the time trend captures the

long-term (geometric) return; thus, larger deviations from this fitted line, whether positive or negative, are

interpreted as economic instability associated with year-to-year economic growth. The sum of squared

residuals is computed as follows:

𝑇
ÿ

𝑡“1

`

ln 𝐸𝑚𝑝𝑡 ´ ln ˆ𝐸𝑚𝑝𝑡
˘2

“

𝑇
ÿ

𝑡“1

˜

ln
𝐸𝑚𝑝𝑡

ˆ𝐸𝑚𝑝𝑡

¸2

Along with the geometric mean, the formula for geometric standard deviation (GSD), 𝜎𝑔, is expressed

as an exponentiated arithmetic mean of the logged differences between some values 𝐴𝑛 and their geometric

mean 𝜇𝑔 over a number of observations 𝑁 as follows:

GSD “ 𝜎𝑔 “ exp

¨

˝

g

f

f

e

1
𝑁

𝑁
ÿ

𝑛“1

ˆ

ln
𝐴𝑛

𝜇𝑔

˙2
˛

‚.

Following this formula, the equivalent growth instability of fishing community 𝑐, as the geometric

standard deviation of the long-term growth trend, can be derived using the fitted mean regression line on

time trend (lnp ˆ𝐸𝑚𝑝𝑡q “ 𝛽0 ` 𝛽1 ¨ 𝑡), as follows. The economic instability of community 𝑐, represented as

the geometric standard deviation of economic growth, is given by:

𝜎𝑐 “ 𝑠𝑐 “ exp

¨

˚

˝

g

f

f

e

1
𝑇

𝑇
ÿ

𝑡“1

˜

ln
𝐸𝑚𝑝𝑡

ˆ𝐸𝑚𝑝𝑡

¸2
˛

‹

‚
.
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C Robustness check using direct diversification measure

Table C1: Estimation results for robustness check: using fisheries diversification

(1) (2) (3) (1*) (2*) (3*)

HDF EHDF

Population (𝛼1) -0.017*** -0.018*** -0.019*** -0.018*** -0.018*** -0.020***
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Wage/Capita Inc. (𝛼2) 0.002 0.001 -0.000 0.001 0.000 -0.001
(0.004) (0.004) (0.004) (0.004) (0.004) (0.004)

Ind. Specialization (𝛼3) -0.014* -0.015* -0.018** -0.012 -0.013* -0.016**
(0.008) (0.008) (0.008) (0.008) (0.008) (0.008)

Fish. Diversification (𝛼4) 0.007*** 0.007*** 0.007*** 0.006*** 0.006*** 0.006***
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Population sq. (𝛼11) 0.008*** 0.008*** 0.009*** 0.008*** 0.008*** 0.008***
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Wage/Capita Inc. sq. (𝛼22) -0.021 -0.023* -0.027** -0.020 -0.022 -0.026*
(0.014) (0.014) (0.014) (0.014) (0.014) (0.013)

Ind. Specialization sq. (𝛼33) -0.002 0.001 -0.005 -0.018 -0.016 -0.021
(0.045) (0.045) (0.045) (0.044) (0.044) (0.044)

Fish. Diversification sq. (𝛼44) 0.010** 0.009* 0.010** 0.010** 0.009* 0.010**
(0.005) (0.005) (0.005) (0.005) (0.005) (0.005)

Population * Wage/Capita Inc. (𝛼12) -0.006 -0.006 -0.007 -0.005 -0.004 -0.005
(0.004) (0.004) (0.004) (0.004) (0.004) (0.004)

Population * Ind. Special. (𝛼13) 0.005 0.005 0.001 0.002 0.002 -0.002
(0.009) (0.009) (0.009) (0.009) (0.009) (0.009)

Population * Fish. Div. (𝛼14) -0.008*** -0.008*** -0.008*** -0.008*** -0.007*** -0.008***
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Wage/Capita Inc. * Ind. Special. (𝛼23) -0.017 -0.018 -0.023 -0.023 -0.025 -0.030
(0.019) (0.019) (0.019) (0.019) (0.019) (0.019)

Wage/Capita Inc. * Fish. Div. (𝛼24) 0.003 0.003 0.004 0.001 0.001 0.002
(0.005) (0.005) (0.005) (0.005) (0.005) (0.005)

Econ Special. * Fish. Div. (𝛼34) -0.015 -0.015 -0.013 -0.016* -0.016* -0.014
(0.010) (0.010) (0.010) (0.010) (0.010) (0.010)

Econ. Instability (𝛿1) -0.302*** -0.296*** -0.298*** -0.321*** -0.314*** -0.317***
(0.040) (0.040) (0.039) (0.040) (0.039) (0.039)

Econ. Instability sq (𝛿11) 0.281 0.420 0.370 0.617 0.743 0.664
(0.912) (0.929) (0.942) (0.860) (0.875) (0.886)

Population * Econ. Instability (𝜂11) -0.017 -0.014 -0.016 -0.007 -0.010 -0.007
(0.041) (0.041) (0.041) (0.040) (0.041) (0.040)

Wage/Capita Inc. * Econ. Instability (𝜂21) -0.416*** -0.402*** -0.425*** -0.349*** -0.336*** -0.364***
(0.116) (0.115) (0.114) (0.114) (0.113) (0.111)

Ind. Special. * Econ. Instability (𝜂31) -0.073 -0.083 -0.116 -0.014 -0.022 -0.059
(0.167) (0.167) (0.167) (0.162) (0.163) (0.163)

Fish. Diversification * Econ. Instability (𝜂41) 0.064 0.053 0.055 0.038 0.025 0.028
(0.050) (0.051) (0.051) (0.049) (0.050) (0.050)

Inefficiency
Broader Permit Share -0.720 -1.004 -0.717 -1.024*

(0.734) (0.644) (0.703) (0.618)
Fishing Earnings to Wage Income Ratio 0.051** 0.052**

(0.025) (0.023)

Observations 177 177 177 177 177 177

Standard errors in parentheses. ˚˚˚𝑝 ă 0.01, ˚˚𝑝 ă 0.05, ˚𝑝 ă 0.10.
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D Robustness check using alternative diversification measure with inverse HHI index

Table D1: Estimation results for robustness check: using an alternative diversification measure (inverse HHI)

(1) (2) (3) (1*) (2*) (3*)

HDF EHDF

Population (𝛼1) -0.017*** -0.018*** -0.018*** -0.018*** -0.018*** -0.020***
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Wage/Capita Inc. (𝛼2) 0.002 0.001 0.000 0.001 0.000 -0.001
(0.004) (0.003) (0.004) (0.004) (0.004) (0.004)

Ind. Specialization (𝛼3) -0.014* -0.015** -0.017** -0.012 -0.013* -0.016**
(0.007) (0.007) (0.007) (0.008) (0.008) (0.008)

Fish. Diversification (𝛼4) -0.009*** -0.008*** -0.009*** -0.006*** -0.006*** -0.006***
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Population sq. (𝛼11) 0.008*** 0.008*** 0.008*** 0.008*** 0.008*** 0.008***
(0.001) (0.001) (0.001) (0.002) (0.002) (0.002)

Wage/Capita Inc. sq. (𝛼22) -0.020 -0.023* -0.026* -0.020 -0.022 -0.026*
(0.014) (0.014) (0.013) (0.014) (0.014) (0.013)

Ind. Specialization sq. (𝛼33) 0.015 0.018 0.017 -0.018 -0.016 -0.021
(0.047) (0.047) (0.047) (0.044) (0.044) (0.044)

Fish. Diversification sq. (𝛼44) 0.012** 0.011* 0.011* 0.010** 0.009* 0.010**
(0.006) (0.006) (0.006) (0.005) (0.005) (0.005)

Population * Wage/Capita Inc. (𝛼12) -0.005 -0.005 -0.005 -0.005 -0.004 -0.005
(0.004) (0.004) (0.004) (0.004) (0.004) (0.004)

Population * Ind. Special. (𝛼13) 0.007 0.008 0.005 0.002 0.002 -0.002
(0.008) (0.008) (0.008) (0.009) (0.009) (0.009)

Population * Fish. Div. (𝛼14) 0.008*** 0.008*** 0.009*** 0.008*** 0.007*** 0.008***
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

Wage/Capita Inc. * Ind. Special. (𝛼23) -0.009 -0.011 -0.013 -0.023 -0.025 -0.030
(0.019) (0.019) (0.019) (0.018) (0.019) (0.019)

Wage/Capita Inc. * Fish. Div. (𝛼24) -0.004 -0.004 -0.005 -0.001 -0.001 0.002
(0.006) (0.006) (0.006) (0.005) (0.005) (0.005)

Econ Special. * Fish. Div. (𝛼34) 0.018 0.018 0.016 -0.016* -0.016* -0.014
(0.011) (0.011) (0.011) (0.010) (0.010) (0.010)

Econ. Instability (𝛿1) -0.307*** -0.301*** -0.303*** -0.321*** -0.314*** -0.317***
(0.040) (0.040) (0.039) (0.040) (0.039) (0.039)

Econ. Instability sq. (𝛿11) 0.138 0.298 0.231 0.617 0.743 0.664
(0.897) (0.918) (0.935) (0.860) (0.875) (0.886)

Population * Econ. Instability (𝜂11) -0.017 -0.015 -0.016 -0.007 -0.010 -0.007
(0.038) (0.038) (0.038) (0.040) (0.041) (0.040)

Wage/Capita Inc. * Econ. Instability (𝜂21) -0.454*** -0.440*** -0.459*** -0.349*** -0.336*** -0.364***
(0.112) (0.111) (0.111) (0.114) (0.113) (0.111)

Ind. Special. * Econ. Instability (𝜂31) -0.084 -0.098 -0.121 -0.014 -0.022 -0.059
(0.166) (0.167) (0.168) (0.162) (0.163) (0.163)

Fish. Diversification * Econ. Instability (𝜂41) -0.078 -0.065 -0.066 -0.036 -0.025 -0.028
(0.055) (0.056) (0.057) (0.049) (0.050) (0.050)

Inefficiency
Broader Permit Share -0.728 -0.950 -0.717 -1.024*

(0.695) (0.633) (0.703) (0.618)
Fishing Earnings to Wage Income Ratio 0.044* 0.052**

(0.026) (0.023)

Observations 177 177 177 177 177 177

Standard errors in parentheses. ˚˚˚𝑝 ă 0.01, ˚˚𝑝 ă 0.05, ˚𝑝 ă 0.10.
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E Constructing 95% confidence intervals for 𝑀𝑃𝑦,𝑥3,𝑥4

We outline the detailed procedure for constructing a confidence interval for the marginal product (MP)

of input to output, calculated as the ratio of two distance elasticities. These elasticities are derived from

differentiating the hyperbolic distance function (HDF). Because the elasticities, except for the variable of

interest, are evaluated at their mean values, the remaining logged variables become zero after normalization

by geometric means. This approach allows us to examine how the MP changes with respect to a single

variable of interest—industrial or fisheries specialization—while holding all other factors constant (ceteris

paribus). For illustrative purposes, we focus on the procedure for industrial specialization. The distance

elasticities for industrial specialization and employment growth are presented below.

𝜖𝐷,𝑥3 “ 𝛼3 ` 𝛼33 logp𝑥3q

𝜖𝐷,𝑦 “ 1 ` 𝛿1 ` 𝜂31 logp𝑥3q

Our goal is to compute the variance of 𝑀𝑃𝑦,𝑥3, which is the ratio of these elasticities:

𝑀𝑃 “ 𝑅p𝜖𝐷,𝑥3, 𝜖𝐷,𝑦q “ ´
𝜖𝐷,𝑥3

𝜖𝐷,𝑦

To find the variance of 𝑅, we use the Delta Method, which provides an approximation for the variance

of a function of random variables. The Delta Method states that for a function 𝑔p𝜽q of random variables 𝜽,

the variance of 𝑔p𝜽q can be approximated as:

Varr𝑔p𝜽qs « ∇𝑔p𝜽qJ𝚺∇𝑔p𝜽q

where ∇𝑔p𝜽q is the gradient vector of partial derivatives of 𝑔 with respect to 𝜽, and 𝚺 is the covariance

matrix of 𝜽.

We begin by computing the partial derivatives of 𝑅 with respect to 𝜖𝐷,𝑥3 and 𝜖𝐷,𝑦:

B𝑅

B𝜖𝐷,𝑥3
“ ´

1
𝜖𝐷,𝑦
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B𝑅

B𝜖𝐷,𝑦
“ ´

˜

´
𝜖𝐷,𝑥3

𝜖2
𝐷,𝑦

¸

“
𝜖𝐷,𝑥3

𝜖2
𝐷,𝑦

Applying the Delta Method, the variance of 𝑅 is approximated as:

Varp𝑅q «

ˆ

B𝑅

B𝜖𝐷,𝑥3

˙2
Varp𝜖𝐷,𝑥3q `

ˆ

B𝑅

B𝜖𝐷,𝑦

˙2
Varp𝜖𝐷,𝑦q ` 2

ˆ

B𝑅

B𝜖𝐷,𝑥3

˙ ˆ

B𝑅

B𝜖𝐷,𝑦

˙

Covp𝜖𝐷,𝑥3, 𝜖𝐷,𝑦q

Substituting the expressions for the partial derivatives:

Varp𝑅q «

ˆ

´
1
𝜖𝐷,𝑦

˙2
Varp𝜖𝐷,𝑥3q `

˜

𝜖𝐷,𝑥3

𝜖2
𝐷,𝑦

¸2

Varp𝜖𝐷,𝑦q ` 2
ˆ

´
1
𝜖𝐷,𝑦

˙

˜

𝜖𝐷,𝑥3

𝜖2
𝐷,𝑦

¸

Covp𝜖𝐷,𝑥3, 𝜖𝐷,𝑦q

Simplifying the expression:

Varp𝑅q «
Varp𝜖𝐷,𝑥3q

𝜖2
𝐷,𝑦

`
𝜖2
𝐷,𝑥3 Varp𝜖𝐷,𝑦q

𝜖4
𝐷,𝑦

´
2𝜖𝐷,𝑥3 Covp𝜖𝐷,𝑥3, 𝜖𝐷,𝑦q

𝜖3
𝐷,𝑦

Next, we compute the variances of 𝜖𝐷,𝑥3 and 𝜖𝐷,𝑦 . Since 𝜖𝐷,𝑥3 is a linear combination of 𝛼3 and 𝛼33, its

variance is:

Varp𝜖𝐷,𝑥3q “ Varp𝛼3q ` rlogp𝑥3qs2 Varp𝛼33q ` 2 logp𝑥3q Covp𝛼3, 𝛼33q

However, as the covariance Covp𝛼3, 𝛼33q is negligible in our estimations, we simplify:

Varp𝜖𝐷,𝑥3q « Varp𝛼3q ` rlogp𝑥3qs2 Varp𝛼33q

Similarly, the variance of 𝜖𝐷,𝑦 is:

Varp𝜖𝐷,𝑦q “ Varp𝛿1q ` rlogp𝑥3qs2 Varp𝜂31q ` 2 logp𝑥3q Covp𝛿1, 𝜂31q

Assuming Covp𝛿1, 𝜂31q is negligible, we have:

Varp𝜖𝐷,𝑦q « Varp𝛿1q ` rlogp𝑥3qs2 Varp𝜂31q
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The covariance between 𝜖𝐷,𝑥3 and 𝜖𝐷,𝑦 is given by:

Covp𝜖𝐷,𝑥3, 𝜖𝐷,𝑦q “ Covp𝛼3 ` 𝛼33 logp𝑥3q, 𝛿1 ` 𝜂31 logp𝑥3qq

Expanding this covariance:

Covp𝜖𝐷,𝑥3, 𝜖𝐷,𝑦q “ Covp𝛼3, 𝛿1q ` logp𝑥3qrCovp𝛼3, 𝜂31q ` Covp𝛼33, 𝛿1qs ` rlogp𝑥3qs2 Covp𝛼33, 𝜂31q

In our estimation, the covariance Covp𝜖𝐷,𝑥3, 𝜖𝐷,𝑦q consists of covariances between various parameters,

𝛼3, 𝛿1, 𝜂31, 𝛼33, which include a mix of negative and positive values, thus, the sum of the terms are close to

zero. These terms are multiplied by logp𝑥3q and rlogp𝑥3qs2, further reducing their already small magnitude.

For simplicity and based on this justification, we assume the covariance between these two elasticities is

negligible, effectively zero:

Covp𝜖𝐷,𝑥3, 𝜖𝐷,𝑦q « 0

With this assumption, the simplified variance of 𝑅, derived using the delta method, becomes:

Varp𝑀𝑃𝑦,𝑥3q «
Varp𝜖𝐷,𝑥3q

𝜖2
𝐷,𝑦

`
𝜖2
𝐷,𝑥3 Varp𝜖𝐷,𝑦q

𝜖4
𝐷,𝑦

Once the variance is computed, the 95% confidence interval for the marginal product of 𝑥3 is constructed

using its root-squared value. For the marginal product related to fisheries specialization, an identical

procedure is followed.
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